-
Notifications
You must be signed in to change notification settings - Fork 0
/
offline_fdbm.c
223 lines (193 loc) · 7.14 KB
/
offline_fdbm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//
// offline_fdbm.c - allowing a user to focus on a speaker in a certain direction
//
// Frequency Domain Binaural Model (FDBM):
// original Paper can be found here,
// https://www.jstage.jst.go.jp/article/ast/24/4/24_4_172/_pdf
//
// this algorithm is a bit different compared to the original one.
// some modifications have been made in several parts
//
// to compile:
// make TARGET=offline_fdbm
//
// to run:
// ./offline_fdbm
//
// written by:
//
// IRWANSYAH - USAGAWA Laboratory - Kumamoto University
// irwansyah@ieee.org
//
// last updated August 7, 2018.
//
#include <stdio.h>
#include <math.h>
#include <stdint.h>
#include <time.h>
#define LEN(x) (sizeof(x)/sizeof(x[0]))
#define fs 16000 // sampling rate
#define ch 2 // number of channels
#define N 256 // buffersize
#define theta 0 // target direction
#define Fcut 1250 // cut-off frequency
#define beta 3 // >0 to enhance a sound, =0 no enhancement.
// IPD and ILD models, these are just approximation;
// better performance with real HRTF dataset
// http://sound.media.mit.edu/resources/KEMAR.html
// I guess - this model is good enough for low frequencies
inline double IPDm(double F, double Q) {
double ipd;
ipd = (0.0040260*F+0.2825852)*sin(Q*M_PI/180);
return ipd;
}
// I guess - this model is good enough for high frequencies
inline double ILDm(double F, double Q) {
double ild;
ild = (0.0032276*F+3.2096991);
ild *= sin((-3.8220e-5*F+1.5477)*Q*M_PI/180);
return ild;
}
inline float fast_atan(float x) {
return 0.7853 * x - x * ((int)x - 1) * (0.2447 + 0.0663 * (int)x);
}
int main()
{
// launching FFmpeg via a pipe to read and write wav files.
// sudo apt-get install ffmpeg
int16_t Sig[N][ch];
char charbufin[321];
char charbufout[321];
char f_format[] = "s16le"; // sample format
char filenamein[] = "input-sound.wav"; // mixed speech signal
char filenameout[] = "output-sound.wav"; // enhanced speech signal
sprintf(charbufin,"ffmpeg -hide_banner -loglevel quiet -i %s -f %s -ac %d -",filenamein,f_format,ch);
sprintf(charbufout,"ffmpeg -hide_banner -loglevel quiet -y -f %s -ar %d -ac %d -i - %s",f_format,fs,ch,filenameout);
FILE *pipein, *pipeout;
pipein = popen(charbufin,"r");
pipeout = popen(charbufout,"w");
// define sine, cosine, half-cycle sine window, ...
// IPD/ILD target and (gNorm) segregation coeff ...
// to speed up calculation of STFT and ISTFT
// for speech segregation purpose.
int n, k;
double win[N*2], cos_nk[N*2+1][N+1], sin_nk[N*2+1][N+1];
double gNorm[N+1],F,IPDILDm[N+1];
for (n=0;n<=N*2;n++)
{
for (k=0;k<=N;k++)
{
cos_nk[n][k] = cos(2*M_PI*k*n/LEN(win));
sin_nk[n][k] = sin(2*M_PI*k*n/LEN(win));
if (n==0){
F = k*fs/(2*N);
if (k==0){
gNorm[0] = 1.0;
}
else{
gNorm[k] = (F<Fcut) ? 2*IPDm(F,90.0) : 2*ILDm(F,90.0);
}
IPDILDm[k] = (F<Fcut) ? IPDm(F,theta) : ILDm(F,theta);
}
}
if (n!=N*2){
win[n] = sin(2*M_PI*0.5*n/LEN(win));
}
}
int16_t xreadbuf[N*ch];
double xi[N][ch];
double x[N*2][ch];
double xbuf[N*2][ch];
// initialize the segregation filter as 0
double G[N+1]; for (k=0;k<=N;k++) G[k]=1.0;
double time_spent = 0.0;
int N_iteration = 0;
int count, i;
while (count = fread(xreadbuf,2,N*ch,pipein))
{
clock_t begin = clock();
if (count != N*ch) break;
N_iteration++;
double XRe[N+1][ch] ={0}; // real values of DFT
double XIm[N+1][ch] ={0}; // imaginary values of DFT
double xinv[N*2][ch]={0}; // enhanced signal from invers DFT
double XisRe[N+1]={0}; // real values of interaural spectrogram
double XisIm[N+1]={0}; // imaginary values of interaural spectrogram
double mu[N+1] ={0}; // weight factor
// apply discrete Fourier transform (DFT)
for (n=0;n<N;n++)
{
for (i=0;i<ch;i++)
{
xi[n][i] = xreadbuf[n*ch+i];
x[N+n][i] = xi[n][i]*win[N+n];
for (k=0;k<=N;k++){
XRe[k][i] += x[n][i]*cos_nk[n][k] + x[N+n][i]*cos_nk[N+n][k];
XIm[k][i] -= x[n][i]*sin_nk[n][k] + x[N+n][i]*sin_nk[N+n][k];
}
}
}
// estimate the segregation filter
for (k=0;k<=N;k++)
{
// calculate the interaural spectrogram
XisRe[k] += XRe[k][1]*XRe[k][0] + XIm[k][1]*XIm[k][0];
XisIm[k] += XIm[k][1]*XRe[k][0] - XRe[k][1]*XIm[k][0];
XisRe[k] /= XRe[k][0]*XRe[k][0] + XIm[k][0]*XIm[k][0];
XisIm[k] /= XRe[k][0]*XRe[k][0] + XIm[k][0]*XIm[k][0];
F = k*fs/N;
if (F<Fcut){
// compare with IPD target
mu[k] = fabs(fast_atan(XisIm[k]/XisRe[k])-IPDILDm[k]);
}
else {
// compare with ILD target
mu[k] = fabs(10*log10(XisRe[k]*XisRe[k]+XisIm[k]*XisIm[k])-IPDILDm[k]);
}
mu[k] /= gNorm[k];
G[k] = pow(10,-mu[k]*beta); // the segregation filter
}
// apply invers discrete Fourier transform (IDFT) to the signal
// after involving the segregation filter G[k]
for (n=0;n<N;n++)
{
for (i=0;i<ch;i++)
{
for (k=0;k<=N;k++)
{
if ((k==0)||(k==N)){
xinv[n][i] += G[k]*(XRe[k][i]*cos_nk[n][k]-XIm[k][i]*sin_nk[n][k]);
xinv[N+n][i] += G[k]*XRe[k][i]*cos_nk[N+n][k]-XIm[k][i]*sin_nk[N+n][k];
}
else{
xinv[n][i] += G[k]*XRe[k][i]*(cos_nk[n][k]+cos_nk[N*2-n][k]);
xinv[n][i] -= G[k]*XIm[k][i]*(sin_nk[n][k]-sin_nk[N*2-n][k]);
xinv[N+n][i] += G[k]*XRe[k][i]*(cos_nk[N+n][k]+cos_nk[N-n][k]);
xinv[N+n][i] -= G[k]*XIm[k][i]*(sin_nk[N+n][k]-sin_nk[N-n][k]);
}
}
xinv[n][i] /= N*2;
xinv[N+n][i] /= N*2;
// perfect reconstruction condition
// read this for details
// http://eeweb.poly.edu/iselesni/EL713/STFT/stft_inverse.pdf
xbuf[n][i] = xbuf[N+n][i] + xinv[n][i]*win[n];
xbuf[N+n][i] = xinv[N+n][i]*win[N+n];
x[n][i] = xi[n][i]*win[n];
}
}
clock_t end = clock();
time_spent += (double)(end - begin) / CLOCKS_PER_SEC;
// store the enhanced speech signal and write the signal to a wav file
for (n=0;n<N;n++) {
Sig[n][0] = (int16_t) xbuf[n][0];
Sig[n][1] = (int16_t) xbuf[n][1];
}
fwrite(Sig,2,N*2,pipeout);
}
// close input and output pipes
pclose(pipein);
pclose(pipeout);
// time taken to perform FDBM on a single frame.
printf("\nElapsed time is %.5f milliseconds.\n\n",time_spent*1000/N_iteration);
}