This repository has been archived by the owner on Feb 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 37
/
model.py
309 lines (262 loc) · 10 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
HE2RNA: definition of the algorithm to generate a model for gene expression prediction
Copyright (C) 2020 Owkin Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import numpy as np
import torch
import time
import os
from torch import nn
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from tqdm import tqdm
class HE2RNA(nn.Module):
"""Model that generates one score per tile and per predicted gene.
Args
output_dim (int): Output dimension, must match the number of genes to
predict.
layers (list): List of the layers' dimensions
nonlin (torch.nn.modules.activation)
ks (list): list of numbers of highest-scored tiles to keep in each
channel.
dropout (float)
device (str): 'cpu' or 'cuda'
mode (str): 'binary' or 'regression'
"""
def __init__(self, input_dim, output_dim,
layers=[1], nonlin=nn.ReLU(), ks=[10],
dropout=0.5, device='cpu',
bias_init=None, **kwargs):
super(HE2RNA, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
layers = [input_dim] + layers + [output_dim]
self.layers = []
for i in range(len(layers) - 1):
layer = nn.Conv1d(in_channels=layers[i],
out_channels=layers[i+1],
kernel_size=1,
stride=1,
bias=True)
setattr(self, 'conv' + str(i), layer)
self.layers.append(layer)
if bias_init is not None:
self.layers[-1].bias = bias_init
self.ks = np.array(ks)
self.nonlin = nonlin
self.do = nn.Dropout(dropout)
self.device = device
self.to(self.device)
def forward(self, x):
if self.training:
k = int(np.random.choice(self.ks))
return self.forward_fixed_k(x, k)
else:
pred = 0
for k in self.ks:
pred += self.forward_fixed_k(x, int(k)) / len(self.ks)
return pred
def forward_fixed_k(self, x, k):
mask, _ = torch.max(x, dim=1, keepdim=True)
mask = (mask > 0).float()
x = self.conv(x) * mask
t, _ = torch.topk(x, k, dim=2, largest=True, sorted=True)
x = torch.sum(t * mask[:, :, :k], dim=2) / torch.sum(mask[:, :, :k], dim=2)
return x
def conv(self, x):
x = x[:, x.shape[1] - self.input_dim:]
for i in range(len(self.layers) - 1):
x = self.do(self.nonlin(self.layers[i](x)))
x = self.layers[-1](x)
return x
def training_epoch(model, dataloader, optimizer):
"""Train model for one epoch.
"""
model.train()
loss_fn = nn.MSELoss()
train_loss = []
for x, y in tqdm(dataloader):
x = x.float().to(model.device)
y = y.float().to(model.device)
pred = model(x)
loss = loss_fn(pred, y)
train_loss += [loss.detach().cpu().numpy()]
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss = np.mean(train_loss)
return train_loss
def compute_correlations(labels, preds, projects):
metrics = []
for project in np.unique(projects):
for i in range(labels.shape[1]):
y_true = labels[projects == project, i]
if len(np.unique(y_true)) > 1:
y_prob = preds[projects == project, i]
metrics.append(np.corrcoef(y_true, y_prob)[0, 1])
metrics = np.asarray(metrics)
return np.mean(metrics)
def evaluate(model, dataloader, projects):
"""Evaluate the model on the validation set and return loss and metrics.
"""
model.eval()
loss_fn = nn.MSELoss()
valid_loss = []
preds = []
labels = []
for x, y in dataloader:
pred = model(x.float().to(model.device))
labels += [y]
loss = loss_fn(pred, y.float().to(model.device))
valid_loss += [loss.detach().cpu().numpy()]
pred = nn.ReLU()(pred)
preds += [pred.detach().cpu().numpy()]
valid_loss = np.mean(valid_loss)
preds = np.concatenate(preds)
labels = np.concatenate(labels)
metrics = compute_correlations(labels, preds, projects)
return valid_loss, metrics
def predict(model, dataloader):
"""Perform prediction on the test set.
"""
model.eval()
labels = []
preds = []
for x, y in dataloader:
pred = model(x.float().to(model.device))
labels += [y]
pred = nn.ReLU()(pred)
preds += [pred.detach().cpu().numpy()]
preds = np.concatenate(preds)
labels = np.concatenate(labels)
return preds, labels
def fit(model,
train_set,
valid_set,
valid_projects,
params={},
optimizer=None,
test_set=None,
path=None,
logdir='./exp'):
"""Fit the model and make prediction on evaluation set.
Args:
model (nn.Module)
train_set (torch.utils.data.Dataset)
valid_set (torch.utils.data.Dataset)
valid_projects (np.array): list of integers encoding the projects
validation samples belong to.
params (dict): Dictionary for specifying training parameters.
keys are 'max_epochs' (int, default=200), 'patience' (int,
default=20) and 'batch_size' (int, default=16).
optimizer (torch.optim.Optimizer): Optimizer for training the model
test_set (None or torch.utils.data.Dataset): If None, return
predictions on the validation set.
path (str): Path to the folder where th model will be saved.
logdir (str): Path for TensoboardX.
"""
if path is not None and not os.path.exists(path):
os.mkdir(path)
default_params = {
'max_epochs': 200,
'patience': 20,
'batch_size': 16,
'num_workers': 0}
default_params.update(params)
batch_size = default_params['batch_size']
patience = default_params['patience']
max_epochs = default_params['max_epochs']
num_workers = default_params['num_workers']
writer = SummaryWriter(log_dir=logdir)
# SET num_workers TO 0 WHEN WORKING WITH hdf5 FILES
train_loader = DataLoader(
train_set, batch_size=batch_size, shuffle=True, num_workers=num_workers)
if valid_set is not None:
valid_loader = DataLoader(
valid_set, batch_size=batch_size, shuffle=False, num_workers=num_workers)
if test_set is not None:
test_loader = DataLoader(
test_set, batch_size=batch_size, shuffle=False, num_workers=num_workers)
if optimizer is None:
optimizer = torch.optim.Adam(list(model.parameters()), lr=1e-3,
weight_decay=0.)
metrics = 'correlations'
epoch_since_best = 0
start_time = time.time()
if valid_set is not None:
valid_loss, best = evaluate(
model, valid_loader, valid_projects)
print('{}: {:.3f}'.format(metrics, best))
if np.isnan(best):
best = 0
if test_set is not None:
preds, labels = predict(model, test_loader)
else:
preds, labels = predict(model, valid_loader)
try:
for e in range(max_epochs):
epoch_since_best += 1
train_loss = training_epoch(model, train_loader, optimizer)
dic_loss = {'train_loss': train_loss}
print('Epoch {}/{} - {:.2f}s'.format(
e + 1,
max_epochs,
time.time() - start_time))
start_time = time.time()
if valid_set is not None:
valid_loss, scores = evaluate(
model, valid_loader, valid_projects)
dic_loss['valid_loss'] = valid_loss
score = np.mean(scores)
writer.add_scalars('data/losses',
dic_loss,
e)
writer.add_scalar('data/metrics', score, e)
print('loss: {:.4f}, val loss: {:.4f}'.format(
train_loss,
valid_loss))
print('{}: {:.3f}'.format(metrics, score))
else:
writer.add_scalars('data/losses',
dic_loss,
e)
print('loss: {:.4f}'.format(train_loss))
if valid_set is not None:
criterion = (score > best)
if criterion:
epoch_since_best = 0
best = score
if path is not None:
torch.save(model, os.path.join(path, 'model.pt'))
elif test_set is not None:
preds, labels = predict(model, test_loader)
else:
preds, labels = predict(model, valid_loader)
if epoch_since_best == patience:
print('Early stopping at epoch {}'.format(e + 1))
break
except KeyboardInterrupt:
pass
if path is not None and os.path.exists(os.path.join(path, 'model.pt')):
model = torch.load(os.path.join(path, 'model.pt'))
elif path is not None:
torch.save(model, os.path.join(path, 'model.pt'))
if test_set is not None:
preds, labels = predict(model, test_loader)
elif valid_set is not None:
preds, labels = predict(model, valid_loader)
else:
preds = None
labels = None
writer.close()
return preds, labels