We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
是否有文档解释下这个yaml文件中每个配置项的含义
Global: checkpoints: null pretrained_model: null output_dir: ./output device: gpu save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 100 print_batch_step: 20 use_visualdl: False eval_mode: retrieval retrieval_feature_from: features # 'backbone' or 'features' re_ranking: False use_dali: False
image_shape: [3, 224, 224] save_inference_dir: ./inference
AMP: scale_loss: 65536 use_dynamic_loss_scaling: True
level: O1
Arch: name: RecModel infer_output_key: features infer_add_softmax: False
Backbone: name: PPLCNetV2_base_ShiTu pretrained: True use_ssld: True class_expand: &feat_dim 512 BackboneStopLayer: name: flatten Neck: name: BNNeck num_features: *feat_dim weight_attr: initializer: name: Constant value: 1.0 bias_attr: initializer: name: Constant value: 0.0 learning_rate: 1.0e-20 # NOTE: Temporarily set lr small enough to freeze the bias to zero Head: name: FC embedding_size: *feat_dim class_num: 192612 weight_attr: initializer: name: Normal std: 0.001 bias_attr: False
Loss: Train: - CELoss: weight: 1.0 epsilon: 0.1 - TripletAngularMarginLoss: weight: 1.0 feature_from: features margin: 0.5 reduction: mean add_absolute: True absolute_loss_weight: 0.1 normalize_feature: True ap_value: 0.8 an_value: 0.4 Eval: - CELoss: weight: 1.0
Optimizer: name: Momentum momentum: 0.9 lr: name: Cosine learning_rate: 0.06 # for 8gpu x 256bs warmup_epoch: 5 regularizer: name: L2 coeff: 0.00001
DataLoader: Train: dataset: name: ImageNetDataset image_root: ./dataset/ cls_label_path: ./dataset/train_reg_all_data_v2.txt relabel: True transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: [224, 224] return_numpy: False interpolation: bilinear backend: cv2 - RandFlipImage: flip_code: 1 - Pad: padding: 10 backend: cv2 - RandCropImageV2: size: [224, 224] - RandomRotation: prob: 0.5 degrees: 90 interpolation: bilinear - ResizeImage: size: [224, 224] return_numpy: False interpolation: bilinear backend: cv2 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: hwc sampler: name: PKSampler batch_size: 256 sample_per_id: 4 drop_last: False shuffle: True sample_method: "id_avg_prob" id_list: [50030, 80700, 92019, 96015] # be careful when set relabel=True ratio: [4, 4] loader: num_workers: 4 use_shared_memory: True
Eval: Query: dataset: name: VeriWild image_root: ./dataset/Aliproduct/ cls_label_path: ./dataset/Aliproduct/val_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: [224, 224] return_numpy: False interpolation: bilinear backend: cv2 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: hwc sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True
Gallery: dataset: name: VeriWild image_root: ./dataset/Aliproduct/ cls_label_path: ./dataset/Aliproduct/val_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: [224, 224] return_numpy: False interpolation: bilinear backend: cv2 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: hwc sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True
Metric: Eval: - Recallk: topk: [1, 5] - mAP: {}
The text was updated successfully, but these errors were encountered:
修改数据集路径(image_root: ./dataset/ cls_label_path: ./dataset/train_reg_all_data_v2.txt)后可以先训练试试,观察loss是否下降,已经最终的收敛情况、精度情况,再适当调整learning rate。
Sorry, something went wrong.
@TingquanGao 如果主干网络想改成ResNet50怎么修改,是否有可参考的yaml文件
更改一下Arch:即可
cuicheng01
No branches or pull requests
是否有文档解释下这个yaml文件中每个配置项的含义
global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 100
print_batch_step: 20
use_visualdl: False
eval_mode: retrieval
retrieval_feature_from: features # 'backbone' or 'features'
re_ranking: False
use_dali: False
used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
O1: mixed fp16
level: O1
model architecture
Arch:
name: RecModel
infer_output_key: features
infer_add_softmax: False
Backbone:
name: PPLCNetV2_base_ShiTu
pretrained: True
use_ssld: True
class_expand: &feat_dim 512
BackboneStopLayer:
name: flatten
Neck:
name: BNNeck
num_features: *feat_dim
weight_attr:
initializer:
name: Constant
value: 1.0
bias_attr:
initializer:
name: Constant
value: 0.0
learning_rate: 1.0e-20 # NOTE: Temporarily set lr small enough to freeze the bias to zero
Head:
name: FC
embedding_size: *feat_dim
class_num: 192612
weight_attr:
initializer:
name: Normal
std: 0.001
bias_attr: False
loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
- TripletAngularMarginLoss:
weight: 1.0
feature_from: features
margin: 0.5
reduction: mean
add_absolute: True
absolute_loss_weight: 0.1
normalize_feature: True
ap_value: 0.8
an_value: 0.4
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.06 # for 8gpu x 256bs
warmup_epoch: 5
regularizer:
name: L2
coeff: 0.00001
data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/
cls_label_path: ./dataset/train_reg_all_data_v2.txt
relabel: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
return_numpy: False
interpolation: bilinear
backend: cv2
- RandFlipImage:
flip_code: 1
- Pad:
padding: 10
backend: cv2
- RandCropImageV2:
size: [224, 224]
- RandomRotation:
prob: 0.5
degrees: 90
interpolation: bilinear
- ResizeImage:
size: [224, 224]
return_numpy: False
interpolation: bilinear
backend: cv2
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: hwc
sampler:
name: PKSampler
batch_size: 256
sample_per_id: 4
drop_last: False
shuffle: True
sample_method: "id_avg_prob"
id_list: [50030, 80700, 92019, 96015] # be careful when set relabel=True
ratio: [4, 4]
loader:
num_workers: 4
use_shared_memory: True
Eval:
Query:
dataset:
name: VeriWild
image_root: ./dataset/Aliproduct/
cls_label_path: ./dataset/Aliproduct/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
return_numpy: False
interpolation: bilinear
backend: cv2
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: hwc
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Metric:
Eval:
- Recallk:
topk: [1, 5]
- mAP: {}
The text was updated successfully, but these errors were encountered: