-
Notifications
You must be signed in to change notification settings - Fork 47
/
brzo_i2c.c
1082 lines (985 loc) · 39.5 KB
/
brzo_i2c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
brzo_i2c.c -- A fast i2c master for the esp8266 written in assembly language
Copyright (c) 2016 Pascal Kurtansky (pascal at kurtansky dot ch).
All rights reserved.
This file is part of the library brzo_i2c.
Brzo_i2c is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Brzo_i2c is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ARDUINO
#include <eagle_soc.h>
#include <ets_sys.h>
#include <os_type.h>
#include <osapi.h>
#include <gpio.h>
#include <user_interface.h>
extern void ets_isr_mask(unsigned intr); // missing definition
extern void ets_isr_unmask(unsigned intr); // missing definition
#ifndef ICACHE_RAM_ATTR
#define ICACHE_RAM_ATTR
#endif
#endif
#include "brzo_i2c.h"
// Global variables
uint16_t sda_bitmask, scl_bitmask, iteration_scl_halfcycle;
uint16_t iteration_remove_spike;
uint32_t iteration_scl_clock_stretch;
uint16_t ACK_polling_loop_usec;
uint8_t i2c_slave_address;
uint16_t i2c_SCL_frequency = 0;
uint8_t i2c_error = 0;
void ICACHE_RAM_ATTR brzo_i2c_write(uint8_t *data, uint32_t no_of_bytes, bool repeated_start)
{
// Pointer to Data Buffer, Number of Bytes to Send from Data Buffer
// Returns 0 or Error encoded as follows
// Bit 0 (1) : Bus not free
// Bit 1 (2) : Not ACK ("NACK") by slave during write: Either the slave did not respond to the given slave address;
// or it did not ACK a byte transferred by the master.
// Bit 2 (4) : --
// Bit 3 (8) : Clock Stretching by slave exceeded maximum clock stretching time
// Bit 4 (16): --
// Bit 5 (32): --
// Do not perform an i2c write if a previous i2c command has already failed
if (i2c_error > 0) return;
uint8_t byte_to_send = i2c_slave_address << 1;
// Assembler Variables
uint32_t a_set, a_repeated, a_in_value, a_temp1, a_bit_index;
if (repeated_start == true) a_repeated = 1;
else a_repeated = 0;
asm volatile (
// Disable all interrupts, i.e. interrupts up to the highest interrupt level of 15
// the current level is saved in %[r_temp1] but we will not use that value again,
// instead we will just enable all interrupt levels at the end of this routine
"RSIL %[r_temp1], 15;"
"MOVI %[r_set], 0x60000304;"
// Check if bus is free and send START
"OR %[r_temp1], %[r_sda_bitmask], %[r_scl_bitmask];"
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h = > in: 0x60000318
"MEMW;"
"MOVI.N %[r_error], 1;"
// If either SDA or SCL is low, then bus is not free and thus jump to l_exit
"BNALL %[r_in_value], %[r_temp1], l_exit;"
// Bus is free, so we can send START
"MOVI.N %[r_error], 0;"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// Set SCL = 1
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
// Set SDA = 0
// Delay for tHD;STA >= 4.0 usec for standard mode, 0.6 usec for fast or 0.26 usec fast mode plus
// => a delay of one half cycle is enough to meet those timings
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear: 0x60000308
"l_w01:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w01;"
// Post Condition: SDA = 0, SCL = 1
// The outer loop, sending 1...n data bytes
"l_send_byte:"
// select the MSB of byte_to_send
"MOVI %[r_bit_index], 128;"
// The inner loop, sending 1...8 bits
"l_send_bit:"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// check if the bit of byte_to_send at bit_index is 0 or 1
"BALL %[r_byte_to_send], %[r_bit_index], l_sda1_scl0;"
// SDA = 0, SCL = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear: 0x60000308
"MEMW;"
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear: 0x60000308
"l_w02:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w02;"
"j l_sdax_scl1;"
"l_sda1_scl0:"
// SDA = 1, SCL = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear: 0x60000308
"MEMW;"
"S16I %[r_sda_bitmask], %[r_set], 0;"
"l_w03:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w03;"
"l_sdax_scl1:"
// SDA = leave unchanged and set SCL = 1
// Check for clock stretching
// Delay is little bit shorter, i.e. half_cycle - delta
"ADDI %[r_temp1], %[r_iteration_scl_halfcycle], -5;"
// Let SCL raise
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
"l_w04:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
// Explicitly BGEZ instead of BNEZ
"BGEZ %[r_temp1], l_w04;"
// Sample SCL value
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h = > in: 0x60000318
"MEMW;"
// r_temp1 holds the number of iterations for clock stretch timeout
"MOV.N %[r_temp1], %[r_iteration_scl_clock_stretch];"
// Branch if SCL = 1, i.e. no stretching
"BALL %[r_in_value], %[r_scl_bitmask], l_no_stretch;"
// SCL = 0, i.e. stretching by the slave, i.e. it pulls SCL low
"l_stretch:"
// Sample SCL value
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h = > in: 0x60000318
"MEMW;"
// Branch if SCL = 1, i.e. no more stretching
"BALL %[r_in_value], %[r_scl_bitmask], l_scl_high_by_slave;"
// SCL is still low
"ADDI.N %[r_temp1], %[r_temp1], -1;"
// Did we reach the clock stretch timeout?
// Branch if we have not yet reached the timeout
"BNEZ %[r_temp1], l_stretch;"
// We have reached the clock stretch timeout, i.e. SCL is still pulled low by the slave
// Error: Bus is not free, since SCL is still low AND clock stretch timeout reached
"MOVI.N %[r_error], 8;"
// We explicitly do not send a STOP instead we exit, i.e. jump to l_exit and not to l_send_stop
"j l_exit;"
"l_scl_high_by_slave:"
// SCL was set high by the slave
// We have to make sure that SCL = 1 for a complete half cycle
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"l_w041:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w041;"
"l_no_stretch:"
// Postcondition: SCL = 1 for a half cycle
// Are there bits left that we need to send?
"SRLI %[r_bit_index], %[r_bit_index], 1;"
// When the LSB of the byte_to_send was sent, i.e. bit index was 1 before SRLI, it will now be zero
// As long as the LSB was not sent keep on sending bits, i.e. jump
"BNEZ %[r_bit_index], l_send_bit;"
// we have sent 8 Bits
// check for ACK by slave
// Precondition
// SDA = LSB (i.e. SDA = 0, since we have an i2c write), SCL = 1
// SCL = 0
// Spike reducing waits here
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear : 0x60000308
"MOV.N %[r_temp1], %[r_iteration_minimize_spike];"
"l_w05:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w05;"
// Reduce number of iterations by the ones we've already used
"SUB %[r_temp1], %[r_iteration_scl_halfcycle], %[r_iteration_minimize_spike];"
// Now we let SDA raise.
// In case of an ACK the i2c slave is pulling SDA down
// In case of an NACK, SDA raises
"S16I %[r_sda_bitmask], %[r_set], 0;"
"MEMW;"
"l_w06:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_w06;"
// Delay is little bit shorter, i.e. half_cycle - delta
// Because we will have a L16UI after in this half cycle
"ADDI %[r_temp1], %[r_iteration_scl_halfcycle], -5;"
// Set SCL = 1, i.e. start of the second half cycle of the 9th SCL cycle
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
// Delay for the second half cycle of the 9th SCL cycle
"l_w07:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_w07;"
// Sample SDA at the end of the 9th clock cycle
// In the case of an NACK we want to leave enough time that SDA can raise
// If sda_value AND sda_bitmask == 0 => ACK else we have an NACK
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h = > in: 0x60000318
"BNALL %[r_in_value], %[r_sda_bitmask], l_slave_ack;"
"MOVI.N %[r_error], 2;"
// NACK by slave
// Postcondition:
// SDA = 1 (NACK) and SCL = 1
// 9th Clock Cycle is finished
"j l_send_stop;"
"l_slave_ack:"
// ACK
// Precondition: SDA = 0 (still pulled low by the slave) and SCL = 1
// The slave will pull SDA low as long as SCL = 1
// We have to set SDA = 0 by the master
// clear : 0x60000308
"S16I %[r_sda_bitmask], %[r_set], 4;"
// Postcondition:
// SDA = 0 and SCL = 1
// 9th Clock Cycle is finished
"BEQZ %[r_no_of_bytes], l_send_stop;"
// Branch if there are no more Data Bytes to send
// Load the corresponding element of array data[.] into byte_to_send
"L8UI %[r_byte_to_send], %[r_adr_array_element], 0;"
// Move the pointer to the next array element (since we have an array of bytes, the increment is 1)
"ADDI.N %[r_adr_array_element], %[r_adr_array_element], 1;"
// Decrement the number of bytes to send
"ADDI.N %[r_no_of_bytes], %[r_no_of_bytes], -1;"
"j l_send_byte;"
"l_send_stop:"
// Send Stop
// We have to make sure that SDA = 0 and SCL = 1, before we send the STOP sequence,
// i.e. "A LOW to HIGH transition on the SDA line while SCL is HIGH"
// In order to achieve this econdition, we have to distinguish between
// 1) NACK: SDA = 1, SCL = 1
// 2) ACK: SDA = 0, SCL = 1
// SDA is still pulled low by the slave, so we have to signal the slave to release it.
// We will do this by letting SCL go low.
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// if we had a NACK then r_error = 2
// if we had an ACK then r_error = 0
"BNEZ.N %[r_error], l_stop_after_NACK;"
// Send stop after ACK
// Precondition: SDA = 0, SCL = 1
// We are at the beginning of the 10th cycle (if there was no clock stretching)
// Set SCL = 0
// During the first half cycle the slave should release SDA...
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear : 0x60000308
"MEMW;"
"l_w08:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w08;"
// Check for a repeated start
// Branch if r_repeated is 0, i.e. is no repeated start, just send stop
"BEQZ.N %[r_repeated], l_no_repeated_start;"
// Make sure that the precondition for the next command (i.e. the start) will be met
// Currently, SCL = 0 and SDA is starting to raise, since the slave has released it
// To be on the safe side, we set both SCL = 1 _and SDA = 1
// SDA = 1
"S16I %[r_sda_bitmask], %[r_set], 0;"
"MEMW;"
// SCL = 1;
"S16I %[r_scl_bitmask], %[r_set], 0;"
// Postcondition: SCL = 1 and SDA = 1, now the next i2c command send start
"j l_exit;"
"l_no_repeated_start:"
// For the second half cycle, we set SDA = 0, SCL = 1
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear : 0x60000308
"MEMW;"
"S16I %[r_scl_bitmask], %[r_set], 0;"
"l_w09:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w09;"
// For the first half cycle of the 11th cycle, we set SDA = 1 and leave SCL = 1
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// SDA = 1 (SCL is already high, we don't need to change it)
"S16I %[r_sda_bitmask], %[r_set], 0;"
"MEMW;"
"l_w10:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w10;"
"j l_exit;"
"l_stop_after_NACK:"
// Send stop after NACK
// Precondition: SDA = 1, SCL = 1
// SDA = 0
// SCL = 1 : In "normal" cycles we woud set SCL to 0
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear: 0x60000308
"S16I %[r_scl_bitmask], %[r_set], 0;"
// Delay for the first half cycle of 10th cycle
"MEMW;"
"l_w11:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w11;"
// Postcondition: SDA = 0 and SCL = 1
// Now we set SDA = 1 and leave SCL = 1 : This ist the STOP condition,
// i.e. the "A LOW to HIGH transition on the SDA line while SCL is HIGH"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"S16I %[r_sda_bitmask], %[r_set], 0;"
// SDA = 1 (SCL is already high, we don't need to change it)
"MEMW;"
"l_w12:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w12;"
"l_exit:"
// Enable all interrupts again, i.e. interrupts with interrupt level >= 1
"RSIL %[r_temp1], 0;"
: [r_set] "+r" (a_set), [r_repeated] "+r" (a_repeated), [r_temp1] "+r" (a_temp1), [r_in_value] "+r" (a_in_value), [r_error] "+r" (i2c_error), [r_bit_index] "+r" (a_bit_index), [r_adr_array_element] "+r" (&data[0]), [r_byte_to_send] "+r" (byte_to_send), [r_no_of_bytes] "+r" (no_of_bytes)
: [r_sda_bitmask] "r" (sda_bitmask), [r_scl_bitmask] "r" (scl_bitmask), [r_iteration_scl_halfcycle] "r" (iteration_scl_halfcycle), [r_iteration_minimize_spike] "r" (iteration_remove_spike), [r_iteration_scl_clock_stretch] "r" (iteration_scl_clock_stretch)
: "memory"
);
return;
}
void ICACHE_RAM_ATTR brzo_i2c_read(uint8_t *data, uint32_t nr_of_bytes, bool repeated_start)
{
// Pointer to Data Buffer, Number of Bytes to Read from Data Buffer
// Set i2c_error as follows
// Bit 0 (1) : Bus not free
// Bit 1 (2) : --
// Bit 2 (4) : Not ACK ("NACK") by slave during read, i.e. slave did not respond to the given slave address
// Bit 3 (8) : Clock Stretching by slave exceeded maximum clock stretching time
// Bit 4 (16): Function called with 0 bytes to be read by the master.
// Command not sent to the slave, since this could yield to a bus stall (SDA remains 0)
// Bit 5 (32): --
// Set i2c_error and return if "empty" i2c read
if (nr_of_bytes == 0) {
i2c_error = 16;
return;
}
// Do not perform an i2c read if a previous i2c command has already failed
if (i2c_error > 0) return;
// Assembler Variables
uint32_t a_set, a_repeated, a_in_value, a_temp1, a_temp2, a_bit_index;
a_temp2 = 0;
if (repeated_start == true) a_repeated = 1;
else a_repeated = 0;
// a_temp2 holds 7 Bit slave address, with the LSB = 1 for i2c read
a_temp2 = (i2c_slave_address << 1) | 1;
asm volatile (
// Disable all interrupts, i.e. interrupts up to the highest interrupt level of 15
"RSIL %[r_temp1], 15;"
"MOVI %[r_set], 0x60000304;"
// Check if bus is free and send START
"OR %[r_temp1], %[r_sda_bitmask], %[r_scl_bitmask];"
"L16UI %[r_in_value], %[r_set], 20;"
"MEMW;"
"MOVI.N %[r_error], 1;"
"BNALL %[r_in_value], %[r_temp1], l_exit_r;"
"MOVI.N %[r_error], 0;"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
"S16I %[r_sda_bitmask], %[r_set], 4;"
"l_r01:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r01;"
// Post Condition: SDA = 0, SCL = 1
// a_temp2 holds the slave address OR 1, i.e. i2c read
// Send slave address
"MOVI %[r_bit_index], 128;"
"l_send_bit_r:"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"BALL %[r_temp2], %[r_bit_index], l_sda1_scl0_r;"
"S16I %[r_scl_bitmask], %[r_set], 4;"
"MEMW;"
"S16I %[r_sda_bitmask], %[r_set], 4;"
"l_r02:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r02;"
"j l_sdax_scl1_r;"
"l_sda1_scl0_r:"
"S16I %[r_scl_bitmask], %[r_set], 4;"
"MEMW;"
"S16I %[r_sda_bitmask], %[r_set], 0;"
"l_r03:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r03;"
"l_sdax_scl1_r:"
"ADDI %[r_temp1], %[r_iteration_scl_halfcycle], -5;"
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
"l_r04:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_r04;"
"L16UI %[r_in_value], %[r_set], 20;"
"MEMW;"
"MOV.N %[r_temp1], %[r_iteration_scl_clock_stretch];"
"BALL %[r_in_value], %[r_scl_bitmask], l_no_stretch_r;"
"l_stretch_r:"
"L16UI %[r_in_value], %[r_set], 20;"
"MEMW;"
"BALL %[r_in_value], %[r_scl_bitmask], l_scl_high_by_slave_r;"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"BNEZ %[r_temp1], l_stretch_r;"
"MOVI.N %[r_error], 8;"
"j l_exit_r;"
"l_scl_high_by_slave_r:"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"l_r05:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r05;"
"l_no_stretch_r:"
"SRLI %[r_bit_index], %[r_bit_index], 1;"
"BNEZ %[r_bit_index], l_send_bit_r;"
"S16I %[r_scl_bitmask], %[r_set], 4;"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// Stretch the first half cycle of the 9th cycle a little bit
// Because the the second half cycle of the 8th cycle was a little bit short, due to the not jump above
"ADDI.N %[r_temp1], %[r_temp1], 3;"
"l_r06:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r06;"
"ADDI %[r_temp1], %[r_iteration_scl_halfcycle], -5;"
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
"l_r07:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_r07;"
"L16UI %[r_in_value], %[r_set], 20;"
"BNALL %[r_in_value], %[r_sda_bitmask], l_slave_ack_r;"
"MOVI.N %[r_error], 4;"
"j l_stop_after_NACK_r;"
"l_slave_ack_r:"
// Postcondition:
// ACK by slave for slave address and read command
// SDA = 0 by the slave (!)
// SCL = 1
// 9th Clock Cycle is finished
// At least one byte should be read by the master, i.e. nr_of_bytes >= 1
"l_read_byte:"
// Precondition
// SCL = 1
// SDA = 0 -- either: by the slave when it ACKnowledged the slave address and read command,
// or by the master, i.e. when the master ACKnowledged the reception of a byte from the slave
// r_temp2 is free to be re-used
// r_temp2 will hold the bits read from the slave and eventually a whole byte
// initialize r_temp2 = 0
"MOVI.N %[r_temp2], 0;"
// r_bit_index points to the MSB of data byte to be received (the slave transmitts the MSB first)
"MOVI %[r_bit_index], 128;"
"l_read_bit:"
// Spike reducing delay:
"MOV.N %[r_temp1], %[r_iteration_minimize_spike];"
// SCL = 0
// the master does not yet release SDA, i.e. leave SDA = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear: 0x60000308
"MEMW;"
"l_r08:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r08;"
// Reduce number of iterations by the ones we've already used
"SUB %[r_temp1], %[r_iteration_scl_halfcycle], %[r_iteration_minimize_spike];"
// Let SDA raise, i.e. the slave gains control over SDA
"S16I %[r_sda_bitmask], %[r_set], 0;"
"MEMW;"
"l_r09:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_r09;"
// Postcondition
// SCL = 0
// SDA controlled by slave
// First half cycle is finished
// Check for clock stretching and sample the value of SDA slightly before the next clock cycle will be over
// Therefore, we reduce the delay counter: half_cycle - delta
"ADDI %[r_temp1], %[r_iteration_scl_halfcycle], -5;"
// Let SCL raise
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
"l_r10:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_r10;"
// Sample SCL and SDA value
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h => in: 0x60000318
"MEMW;"
// r_temp1 holds the number of iterations for clock stretch timeout
"MOV.N %[r_temp1], %[r_iteration_scl_clock_stretch];"
// Branch if SCL = 1, i.e. no stretching
"BALL %[r_in_value], %[r_scl_bitmask], l_no_stretch_rB;"
// SCL = 0, i.e. stretching by the slave, i.e. it pulls SCL low
"l_stretch_rB:"
// Sample SCL value
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h => in: 0x60000318
"MEMW;"
// Branch if SCL = 1, i.e. no more stretching
"BALL %[r_in_value], %[r_scl_bitmask], l_scl_high_by_slave_rB;"
// SCL is still low
// Reduce the number of clock stretching iterations
"ADDI.N %[r_temp1], %[r_temp1], -1;"
// Did we reach the clock stretch timeout?
// Branch if we have not yet reached the timeout
"BNEZ %[r_temp1], l_stretch_rB;"
// We have reached the clock stretch timeout, i.e. SCL is still pulled low by the slave
// Error: Bus is not free, since SCL is still low AND clock stretch timeout reached
"MOVI.N %[r_error], 8;"
// We explicitly do not send a STOP instead we exit, i.e. jump to l_exit and not to l_send_stop
"j l_exit_r;"
"l_scl_high_by_slave_rB:"
// SCL was set high by the slave
// Also, the slave has started to change SDA, either to an 0 or 1, depending on the value of the bit to send
// We will thus have to sample SDA at the end of the half cycle minus delta
"ADDI %[r_temp1], %[r_iteration_scl_halfcycle], -5;"
"l_r11:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_r11;"
// Sample SDA value
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h => in: 0x60000318
"MEMW;"
"l_no_stretch_rB:"
// Postcondition: SCL = 1 for a half cycle
// r_in_value contains also the SDA value, i.e. the bit sent from the slave
// If the bit sent from the slave is 1 then perfom an OR else not.
"BNALL %[r_in_value], %[r_sda_bitmask], l_slave_sent_low;"
"OR %[r_temp2], %[r_temp2], %[r_bit_index];"
"l_slave_sent_low:"
// Move the bit index to the next bit
"SRLI %[r_bit_index], %[r_bit_index], 1;"
// Are there bits left that we need to read?
// When the LSB was read, i.e. bit index was 1 before SRLI, it will now be zero
// As long as the LSB was not yet received jump
"BNEZ %[r_bit_index], l_read_bit;"
// we have read 8 Bits
// Postcondition:
// SDA = LSB from the slave
// SCL = 1
// 8th Clock Cycle is finished
// Store the received byte held in register r_temp2 into memory
"S8I %[r_temp2], %[r_adr_array_element], 0;"
// Decrement the number of bytes to read
"ADDI.N %[r_nr_of_bytes], %[r_nr_of_bytes], -1;"
// Are there any more bytes the master should read?
"BEQZ %[r_nr_of_bytes], l_no_more_bytes_to_read;"
// yes...
// Move the pointer to the next array element (since we have an array of bytes, the increment is 1)
"ADDI.N %[r_adr_array_element], %[r_adr_array_element], 1;"
// Send ACK to the Slave
// The master sets SCL = 0 and SDA = 0 (= ACK)
// If the value of the LSB from the slave was 1, SDA will start to fall from high to low
// i.e. the master is pulling SDA low. Else SDA will remain low.
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// SCL = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear : 0x60000308
"MEMW;"
// SDA = 0
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear : 0x60000308
"l_r12:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r12;"
// The master will stop pulling SDA low the end of the 2nd half cycle of the 9th cycle
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// Set SCL = 1 and still pull SDA low
"S16I %[r_scl_bitmask], %[r_set], 0;"
"l_r13:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r13;"
// Postcondition:
// SDA = 0
// SCL = 1
// 9th Clock Cycle is finished
// Read next byte
"j l_read_byte;"
"l_no_more_bytes_to_read:"
// Send an NACK to the Slave
// The master sets SCL = 0 and SDA = 1
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// SCL = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear : 0x60000308
"MEMW;"
// SDA = 1
"S16I %[r_sda_bitmask], %[r_set], 0;"
"l_r14:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r14;"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// Set SCL = 1 and don't change SDA, i.e. leave SDA = 1
"S16I %[r_scl_bitmask], %[r_set], 0;"
"l_r15:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r15;"
// Postcondition
// SDA = 1
// SCL = 1
// 9th Clock Cycle is finished
"l_stop_after_NACK_r:"
// Send stop after either the following events
// i) Read(slave_address) was not acknowledged by the slave, i.e. No ACK from slave ("NACK")
// ii) The master has sent an NACK to the slave after having received the last byte,
// i.e. all nr_of_bytes bytes have been received
// Only in the case ii) a repeated start makes sense, so only then we check for a repeated start
// Case i) means r_error = 4
// Send STOP in case i)
"BNEZ %[r_error], l_send_stop_r;"
// case ii) check for a repeated start, i.e. if r_repeated is 0 then send stop
"BEQZ %[r_repeated], l_send_stop_r;"
// Prepere for repeated start, i.e. finish the 9th cycle by setting SCL = 0 leave SDA = 1
// And start the first half cycle of the 10th cycle
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// SCL = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear: 0x60000308
"MEMW;"
"l_r16:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r16;"
// Set SCL = 1
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
"j l_exit_r;"
"l_send_stop_r:"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// SDA = 0
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear: 0x60000308
"MEMW;"
// SCL = 0
// clear: 0x60000308
"S16I %[r_scl_bitmask], %[r_set], 4;"
// Delay for the first half cycle of 10th cycle
"l_r17:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r17;"
// Postcondition: SDA = 0 and SCL = 0
// SCL = 1, leave SDA = 0
"S16I %[r_scl_bitmask], %[r_set], 0;"
// Delay for tsu;STOP >= 4.0 usec for standard mode, 0.6 usec for fast or 0.26 usec fast mode plus
// => a delay of one half cycle is enough to meet those timings
"MEMW;"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"l_r18:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r18;"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// leave SCL = 1 and set SDA = 1 (this is the STOP condition)
"S16I %[r_sda_bitmask], %[r_set], 0;"
// Delay for tBUF >= 4.7 usec for standard mode, 1.3 usec for fast or 0.5 usec fast mode plus
// => a delay of one half cycle is enough to meet those timings
"l_r19:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_r19;"
"l_exit_r:"
// Enable all interrupts again, i.e. interrupts with interrupt level >= 1
"RSIL %[r_temp1], 0;"
: [r_set] "+r" (a_set), [r_repeated] "+r" (a_repeated), [r_temp1] "+r" (a_temp1), [r_in_value] "+r" (a_in_value), [r_error] "+r" (i2c_error), [r_bit_index] "+r" (a_bit_index), [r_adr_array_element] "+r" (&data[0]), [r_temp2] "+r" (a_temp2), [r_nr_of_bytes] "+r" (nr_of_bytes)
: [r_sda_bitmask] "r" (sda_bitmask), [r_scl_bitmask] "r" (scl_bitmask), [r_iteration_scl_halfcycle] "r" (iteration_scl_halfcycle), [r_iteration_minimize_spike] "r" (iteration_remove_spike), [r_iteration_scl_clock_stretch] "r" (iteration_scl_clock_stretch)
: "memory"
);
return;
}
void ICACHE_RAM_ATTR brzo_i2c_ACK_polling(uint16_t ACK_polling_time_out_usec) {
// Timeout for ACK polling in usec
// Returns 0 or Error encoded as follows
// Bit 0 (1) : Bus not free
// Bit 1 (2) : If the ACK polling time out was exceeded, we will have a NACK, too.
// Bit 2 (4) : --
// Bit 3 (8) : --
// Bit 4 (16): --
// Bit 5 (32): ACK Polling timeout exceeded
// Assembler Variables
uint32_t a_set, a_in_value, a_temp1, a_bit_index;
uint16_t iteration_ACK_polling_timeout;
uint8_t byte_to_send = i2c_slave_address << 1;
if (ACK_polling_time_out_usec == 0) {
iteration_ACK_polling_timeout = 1;
}
else {
iteration_ACK_polling_timeout = ACK_polling_time_out_usec / ACK_polling_loop_usec;
}
asm volatile (
// Disable all interrupts, i.e. interrupts up to the highest interrupt level of 15
// the current level is saved in %[r_temp1] but we will not use that value again,
// instead we will just enable all interrupt levels at the end of this routine
"RSIL %[r_temp1], 15;"
"MOVI %[r_set], 0x60000304;"
// Check if bus is free and send START
"OR %[r_temp1], %[r_sda_bitmask], %[r_scl_bitmask];"
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h = > in: 0x60000318
"MEMW;"
"MOVI.N %[r_error], 1;"
// If either SDA or SCL is low, then bus is not free and thus jump to l_exit_a
"BNALL %[r_in_value], %[r_temp1], l_exit_a;"
// Bus is free, so we can send START
"MOVI.N %[r_error], 0;"
// The ACK polling loop starts here
"l_ACK_loop:"
// Decrease the number of iterations for the ACK polling loop by 1
"ADDI %[r_iteration_ACK_polling_timeout], %[r_iteration_ACK_polling_timeout], -1;"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// Set SCL = 1
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
// Set SDA = 0
// Delay for tHD;STA >= 4.0 usec for standard mode, 0.6 usec for fast or 0.26 usec fast mode plus
// => a delay of one half cycle is enough to meet those timings
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear: 0x60000308
"l_w01_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w01_a;"
// Post Condition: SDA = 0, SCL = 1
// select the MSB of byte_to_send
"MOVI %[r_bit_index], 128;"
// The loop for sending 1...8 bits
"l_send_bit_a:"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// check if the bit of byte_to_send at bit_index is 0 or 1
"BALL %[r_byte_to_send], %[r_bit_index], l_sda1_scl0_a;"
// SDA = 0, SCL = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear: 0x60000308
"MEMW;"
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear: 0x60000308
"l_w02_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w02_a;"
"j l_sdax_scl1_a;"
"l_sda1_scl0_a:"
// SDA = 1, SCL = 0
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear: 0x60000308
"MEMW;"
"S16I %[r_sda_bitmask], %[r_set], 0;"
"l_w03_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w03_a;"
"l_sdax_scl1_a:"
// SDA = leave unchanged and set SCL = 1
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// Let SCL raise
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
"l_w04_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w04_a;"
// Postcondition: SCL = 1 for a half cycle
// Are there bits left that we need to send?
"SRLI %[r_bit_index], %[r_bit_index], 1;"
// When the LSB of the byte_to_send was sent, i.e. bit index was 1 before SRLI, it will now be zero
// As long as the LSB was not sent keep on sending bits, i.e. jump
"BNEZ %[r_bit_index], l_send_bit_a;"
// we have sent 8 Bits
// check for ACK by slave
// Precondition
// SDA = LSB (i.e. SDA = 0, since we have an i2c write), SCL = 1
// SCL = 0
// Spike reducing waits here
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear : 0x60000308
"MOV.N %[r_temp1], %[r_iteration_minimize_spike];"
"l_w05_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w05_a;"
// Reduce number of iterations by the ones we've already used
"SUB %[r_temp1], %[r_iteration_scl_halfcycle], %[r_iteration_minimize_spike];"
// Now we let SDA raise.
// In case of an ACK the i2c slave is pulling SDA down
// In case of an NACK, SDA raises
"S16I %[r_sda_bitmask], %[r_set], 0;"
"MEMW;"
"l_w06_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_w06_a;"
// Delay is little bit shorter, i.e. half_cycle - delta
// Because we will have a L16UI after in this half cycle
"ADDI %[r_temp1], %[r_iteration_scl_halfcycle], -5;"
// Set SCL = 1, i.e. start of the second half cycle of the 9th SCL cycle
"S16I %[r_scl_bitmask], %[r_set], 0;"
"MEMW;"
// Delay for the second half cycle of the 9th SCL cycle
"l_w07_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BGEZ %[r_temp1], l_w07_a;"
// Sample SDA at the end of the 9th clock cycle, because
// in the case of an NACK we want to leave enough time that SDA can raise
// If sda_value AND sda_bitmask == 0 => ACK else we have an NACK
"L16UI %[r_in_value], %[r_set], 20;" // offset is 20d = 14h = > in: 0x60000318
// If there was an ACK then jump
// Since we had an ACK, Postcondition: SDA is still pulled low by the slave (SDA = 0), SCL = 1
"BNALL %[r_in_value], %[r_sda_bitmask], l_slave_ack_a;"
// NACK by slave
"MOVI.N %[r_error], 2;"
// If we have not yet gone through all iterations, jump to the beginning of the ACK loop
// Since we had a NACK, Postcondition: SDA = 1 and SCL = 1
"BNEZ %[r_iteration_ACK_polling_timeout], l_ACK_loop;"
// else we have a timeout and a NACK
// ACK polling timeout error
"MOVI.N %[r_error], 32;"
// Since we had a NACK, Postcondition: SDA = 1 and SCL = 1
// We will send a STOP after the timeout and the NACK, just to be on the safe side
"j l_stop_after_NACK_a;"
"l_slave_ack_a:"
// Precondition: SDA = 0 (still pulled low by the slave) and SCL = 1
// 9th Clock Cycle is finished
// When we had an ACK after some ACK polling iteration (but without a timeout),
// r_error is = 2, since we obviously had an ACK now, we have to set r_error = 0
"MOVI.N %[r_error], 0;"
// The slave will pull SDA low as long as SCL = 1
// First, we have to set SDA = 0 by the master. This is to prevent a spike if the slave shall release
// SDA a little bit too early
// clear : 0x60000308
"S16I %[r_sda_bitmask], %[r_set], 4;"
// SDA is still pulled low by the slave (and the master), so we have to signal the slave to release it.
// We will do this by letting SCL go low.
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// We are at the beginning of the 10th cycle
// Set SCL = 0
// During the first half cycle the slave should release SDA...
"S16I %[r_scl_bitmask], %[r_set], 4;" // clear : 0x60000308
"MEMW;"
"l_w08_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w08_a;"
// Make sure that the precondition for the next command (i.e. the start) will be met
// Currently, SCL = 0 and SDA is still set low by the master
// We thus set both SCL = 1 _and SDA = 1
// SDA = 1
"S16I %[r_sda_bitmask], %[r_set], 0;"
"MEMW;"
// SCL = 1;
"S16I %[r_scl_bitmask], %[r_set], 0;"
// Postcondition: SCL = 1 and SDA = 1, now the next i2c command send start
"j l_exit_a;"
"l_stop_after_NACK_a:"
// Send stop after NACK and timeout
// Precondition: SDA = 1, SCL = 1
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
// SDA = 0
// SCL = 1 : In "normal" cycles we woud set SCL to 0
"S16I %[r_sda_bitmask], %[r_set], 4;" // clear: 0x60000308
"S16I %[r_scl_bitmask], %[r_set], 0;"
// Delay for the first half cycle of 10th cycle
"MEMW;"
"l_w11_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w11_a;"
// Postcondition: SDA = 0 and SCL = 1
// Now we set SDA = 1 and leave SCL = 1 : This ist the STOP condition,
// i.e. the "A LOW to HIGH transition on the SDA line while SCL is HIGH"
"MOV.N %[r_temp1], %[r_iteration_scl_halfcycle];"
"S16I %[r_sda_bitmask], %[r_set], 0;"
// SDA = 1 (SCL is already high, we don't need to change it)
"MEMW;"
"l_w12_a:"
"ADDI.N %[r_temp1], %[r_temp1], -1;"
"NOP;"
"BNEZ %[r_temp1], l_w12_a;"
"l_exit_a:"
// Enable all interrupts again, i.e. interrupts with interrupt level >= 1
"RSIL %[r_temp1], 0;"
: [r_set] "+r" (a_set), [r_temp1] "+r" (a_temp1), [r_in_value] "+r" (a_in_value), [r_error] "+r" (i2c_error), [r_bit_index] "+r" (a_bit_index), [r_byte_to_send] "+r" (byte_to_send), [r_iteration_ACK_polling_timeout] "+r" (iteration_ACK_polling_timeout)
: [r_sda_bitmask] "r" (sda_bitmask), [r_scl_bitmask] "r" (scl_bitmask), [r_iteration_scl_halfcycle] "r" (iteration_scl_halfcycle), [r_iteration_minimize_spike] "r" (iteration_remove_spike)
: "memory"
);
return;
}
void ICACHE_RAM_ATTR brzo_i2c_start_transaction(uint8_t slave_address, uint16_t SCL_frequency_KHz)
{
// 7 Bit Slave Address; SCL Frequency in Steps of 100 KHz, range: 100 -- 1000 KHz
i2c_slave_address = slave_address;
if (i2c_SCL_frequency != SCL_frequency_KHz) {
uint16_t fr_sel = (SCL_frequency_KHz + 50) / 100;
ACK_polling_loop_usec = 95 / fr_sel;
if (system_get_cpu_freq() == 160) {
if (fr_sel <= 1) iteration_scl_halfcycle = 156;
else if (fr_sel == 2) iteration_scl_halfcycle = 79;
else if (fr_sel == 3) iteration_scl_halfcycle = 51;
else if (fr_sel == 4) iteration_scl_halfcycle = 38;
else if (fr_sel == 5) iteration_scl_halfcycle = 30;
else if (fr_sel == 6) iteration_scl_halfcycle = 24;
else if (fr_sel == 7) iteration_scl_halfcycle = 20;
else if (fr_sel == 8) iteration_scl_halfcycle = 18;
else if (fr_sel == 9) iteration_scl_halfcycle = 15;
else iteration_scl_halfcycle = 14;
}
else {
// 80 MHz
if (fr_sel <= 1) iteration_scl_halfcycle = 80;
else if (fr_sel == 2) iteration_scl_halfcycle = 37;
else if (fr_sel == 3) iteration_scl_halfcycle = 26;
else if (fr_sel == 4) iteration_scl_halfcycle = 19;
else if (fr_sel == 5) iteration_scl_halfcycle = 14;
else if (fr_sel == 6) iteration_scl_halfcycle = 11;
else if (fr_sel == 7) iteration_scl_halfcycle = 9;
else iteration_scl_halfcycle = 8;
}
}
}
uint8_t ICACHE_RAM_ATTR brzo_i2c_end_transaction()
{
// returns 0 if transaction completed successfully or error code encoded as follows
// Bit 0 (1) : Bus not free