-
Notifications
You must be signed in to change notification settings - Fork 1
/
scheduling_queue.go
755 lines (673 loc) · 23.8 KB
/
scheduling_queue.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// This file contains structures that implement scheduling queue types.
// Scheduling queues hold pods waiting to be scheduled. This file has two types
// of scheduling queue: 1) a FIFO, which is mostly the same as cache.FIFO, 2) a
// priority queue which has two sub queues. One sub-queue holds pods that are
// being considered for scheduling. This is called activeQ. Another queue holds
// pods that are already tried and are determined to be unschedulable. The latter
// is called unschedulableQ.
// FIFO is here for flag-gating purposes and allows us to use the traditional
// scheduling queue when util.PodPriorityEnabled() returns false.
package queue
import (
"container/heap"
"fmt"
"reflect"
"sync"
"github.com/golang/glog"
"k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client-go/tools/cache"
podutil "k8s.io/kubernetes/pkg/api/v1/pod"
"k8s.io/kubernetes/pkg/scheduler/algorithm/predicates"
priorityutil "k8s.io/kubernetes/pkg/scheduler/algorithm/priorities/util"
"k8s.io/kubernetes/pkg/scheduler/util"
)
var (
queueClosed = "scheduling queue is closed"
)
// SchedulingQueue is an interface for a queue to store pods waiting to be scheduled.
// The interface follows a pattern similar to cache.FIFO and cache.Heap and
// makes it easy to use those data structures as a SchedulingQueue.
type SchedulingQueue interface {
Add(pod *v1.Pod) error
AddIfNotPresent(pod *v1.Pod) error
AddUnschedulableIfNotPresent(pod *v1.Pod) error
// Pop removes the head of the queue and returns it. It blocks if the
// queue is empty and waits until a new item is added to the queue.
Pop() (*v1.Pod, error)
Update(oldPod, newPod *v1.Pod) error
Delete(pod *v1.Pod) error
MoveAllToActiveQueue()
AssignedPodAdded(pod *v1.Pod)
AssignedPodUpdated(pod *v1.Pod)
WaitingPodsForNode(nodeName string) []*v1.Pod
WaitingPods() []*v1.Pod
// Close closes the SchedulingQueue so that the goroutine which is
// waiting to pop items can exit gracefully.
Close()
}
// NewSchedulingQueue initializes a new scheduling queue. If pod priority is
// enabled a priority queue is returned. If it is disabled, a FIFO is returned.
func NewSchedulingQueue() SchedulingQueue {
if util.PodPriorityEnabled() {
return NewPriorityQueue()
}
return NewFIFO()
}
// FIFO is basically a simple wrapper around cache.FIFO to make it compatible
// with the SchedulingQueue interface.
type FIFO struct {
*cache.FIFO
}
var _ = SchedulingQueue(&FIFO{}) // Making sure that FIFO implements SchedulingQueue.
// Add adds a pod to the FIFO.
func (f *FIFO) Add(pod *v1.Pod) error {
return f.FIFO.Add(pod)
}
// AddIfNotPresent adds a pod to the FIFO if it is absent in the FIFO.
func (f *FIFO) AddIfNotPresent(pod *v1.Pod) error {
return f.FIFO.AddIfNotPresent(pod)
}
// AddUnschedulableIfNotPresent adds an unschedulable pod back to the queue. In
// FIFO it is added to the end of the queue.
func (f *FIFO) AddUnschedulableIfNotPresent(pod *v1.Pod) error {
return f.FIFO.AddIfNotPresent(pod)
}
// Update updates a pod in the FIFO.
func (f *FIFO) Update(oldPod, newPod *v1.Pod) error {
return f.FIFO.Update(newPod)
}
// Delete deletes a pod in the FIFO.
func (f *FIFO) Delete(pod *v1.Pod) error {
return f.FIFO.Delete(pod)
}
// Pop removes the head of FIFO and returns it.
// This is just a copy/paste of cache.Pop(queue Queue) from fifo.go that scheduler
// has always been using. There is a comment in that file saying that this method
// shouldn't be used in production code, but scheduler has always been using it.
// This function does minimal error checking.
func (f *FIFO) Pop() (*v1.Pod, error) {
result, err := f.FIFO.Pop(func(obj interface{}) error { return nil })
if err == cache.FIFOClosedError {
return nil, fmt.Errorf(queueClosed)
}
return result.(*v1.Pod), err
}
// WaitingPods returns all the waiting pods in the queue.
func (f *FIFO) WaitingPods() []*v1.Pod {
result := []*v1.Pod{}
for _, pod := range f.FIFO.List() {
result = append(result, pod.(*v1.Pod))
}
return result
}
// FIFO does not need to react to events, as all pods are always in the active
// scheduling queue anyway.
// AssignedPodAdded does nothing here.
func (f *FIFO) AssignedPodAdded(pod *v1.Pod) {}
// AssignedPodUpdated does nothing here.
func (f *FIFO) AssignedPodUpdated(pod *v1.Pod) {}
// MoveAllToActiveQueue does nothing in FIFO as all pods are always in the active queue.
func (f *FIFO) MoveAllToActiveQueue() {}
// WaitingPodsForNode returns pods that are nominated to run on the given node,
// but FIFO does not support it.
func (f *FIFO) WaitingPodsForNode(nodeName string) []*v1.Pod {
return nil
}
// Close closes the FIFO queue.
func (f *FIFO) Close() {
f.FIFO.Close()
}
// NewFIFO creates a FIFO object.
func NewFIFO() *FIFO {
return &FIFO{FIFO: cache.NewFIFO(cache.MetaNamespaceKeyFunc)}
}
// NominatedNodeName returns nominated node name of a Pod.
func NominatedNodeName(pod *v1.Pod) string {
return pod.Status.NominatedNodeName
}
// PriorityQueue implements a scheduling queue. It is an alternative to FIFO.
// The head of PriorityQueue is the highest priority pending pod. This structure
// has two sub queues. One sub-queue holds pods that are being considered for
// scheduling. This is called activeQ and is a Heap. Another queue holds
// pods that are already tried and are determined to be unschedulable. The latter
// is called unschedulableQ.
type PriorityQueue struct {
lock sync.RWMutex
cond sync.Cond
// activeQ is heap structure that scheduler actively looks at to find pods to
// schedule. Head of heap is the highest priority pod.
activeQ *Heap
// unschedulableQ holds pods that have been tried and determined unschedulable.
unschedulableQ *UnschedulablePodsMap
// nominatedPods is a map keyed by a node name and the value is a list of
// pods which are nominated to run on the node. These are pods which can be in
// the activeQ or unschedulableQ.
nominatedPods map[string][]*v1.Pod
// receivedMoveRequest is set to true whenever we receive a request to move a
// pod from the unschedulableQ to the activeQ, and is set to false, when we pop
// a pod from the activeQ. It indicates if we received a move request when a
// pod was in flight (we were trying to schedule it). In such a case, we put
// the pod back into the activeQ if it is determined unschedulable.
receivedMoveRequest bool
// closed indicates that the queue is closed.
// It is mainly used to let Pop() exit its control loop while waiting for an item.
closed bool
}
// Making sure that PriorityQueue implements SchedulingQueue.
var _ = SchedulingQueue(&PriorityQueue{})
// NewPriorityQueue creates a PriorityQueue object.
func NewPriorityQueue() *PriorityQueue {
pq := &PriorityQueue{
activeQ: newHeap(cache.MetaNamespaceKeyFunc, util.HigherPriorityPod),
unschedulableQ: newUnschedulablePodsMap(),
nominatedPods: map[string][]*v1.Pod{},
}
pq.cond.L = &pq.lock
return pq
}
// addNominatedPodIfNeeded adds a pod to nominatedPods if it has a NominatedNodeName and it does not
// already exist in the map. Adding an existing pod is not going to update the pod.
func (p *PriorityQueue) addNominatedPodIfNeeded(pod *v1.Pod) {
nnn := NominatedNodeName(pod)
if len(nnn) > 0 {
for _, np := range p.nominatedPods[nnn] {
if np.UID == pod.UID {
glog.Errorf("Pod %v/%v already exists in the nominated map!", pod.Namespace, pod.Name)
return
}
}
p.nominatedPods[nnn] = append(p.nominatedPods[nnn], pod)
}
}
// deleteNominatedPodIfExists deletes a pod from the nominatedPods.
func (p *PriorityQueue) deleteNominatedPodIfExists(pod *v1.Pod) {
nnn := NominatedNodeName(pod)
if len(nnn) > 0 {
for i, np := range p.nominatedPods[nnn] {
if np.UID == pod.UID {
p.nominatedPods[nnn] = append(p.nominatedPods[nnn][:i], p.nominatedPods[nnn][i+1:]...)
if len(p.nominatedPods[nnn]) == 0 {
delete(p.nominatedPods, nnn)
}
break
}
}
}
}
// updateNominatedPod updates a pod in the nominatedPods.
func (p *PriorityQueue) updateNominatedPod(oldPod, newPod *v1.Pod) {
// Even if the nominated node name of the Pod is not changed, we must delete and add it again
// to ensure that its pointer is updated.
p.deleteNominatedPodIfExists(oldPod)
p.addNominatedPodIfNeeded(newPod)
}
// Add adds a pod to the active queue. It should be called only when a new pod
// is added so there is no chance the pod is already in either queue.
func (p *PriorityQueue) Add(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
err := p.activeQ.Add(pod)
if err != nil {
glog.Errorf("Error adding pod %v/%v to the scheduling queue: %v", pod.Namespace, pod.Name, err)
} else {
if p.unschedulableQ.get(pod) != nil {
glog.Errorf("Error: pod %v/%v is already in the unschedulable queue.", pod.Namespace, pod.Name)
p.deleteNominatedPodIfExists(pod)
p.unschedulableQ.delete(pod)
}
p.addNominatedPodIfNeeded(pod)
p.cond.Broadcast()
}
return err
}
// AddIfNotPresent adds a pod to the active queue if it is not present in any of
// the two queues. If it is present in any, it doesn't do any thing.
func (p *PriorityQueue) AddIfNotPresent(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
if p.unschedulableQ.get(pod) != nil {
return nil
}
if _, exists, _ := p.activeQ.Get(pod); exists {
return nil
}
err := p.activeQ.Add(pod)
if err != nil {
glog.Errorf("Error adding pod %v/%v to the scheduling queue: %v", pod.Namespace, pod.Name, err)
} else {
p.addNominatedPodIfNeeded(pod)
p.cond.Broadcast()
}
return err
}
func isPodUnschedulable(pod *v1.Pod) bool {
_, cond := podutil.GetPodCondition(&pod.Status, v1.PodScheduled)
return cond != nil && cond.Status == v1.ConditionFalse && cond.Reason == v1.PodReasonUnschedulable
}
// AddUnschedulableIfNotPresent does nothing if the pod is present in either
// queue. Otherwise it adds the pod to the unschedulable queue if
// p.receivedMoveRequest is false, and to the activeQ if p.receivedMoveRequest is true.
func (p *PriorityQueue) AddUnschedulableIfNotPresent(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
if p.unschedulableQ.get(pod) != nil {
return fmt.Errorf("pod is already present in unschedulableQ")
}
if _, exists, _ := p.activeQ.Get(pod); exists {
return fmt.Errorf("pod is already present in the activeQ")
}
if !p.receivedMoveRequest && isPodUnschedulable(pod) {
p.unschedulableQ.addOrUpdate(pod)
p.addNominatedPodIfNeeded(pod)
return nil
}
err := p.activeQ.Add(pod)
if err == nil {
p.addNominatedPodIfNeeded(pod)
p.cond.Broadcast()
}
return err
}
// Pop removes the head of the active queue and returns it. It blocks if the
// activeQ is empty and waits until a new item is added to the queue. It also
// clears receivedMoveRequest to mark the beginning of a new scheduling cycle.
func (p *PriorityQueue) Pop() (*v1.Pod, error) {
p.lock.Lock()
defer p.lock.Unlock()
for len(p.activeQ.data.queue) == 0 {
// When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
// When Close() is called, the p.closed is set and the condition is broadcast,
// which causes this loop to continue and return from the Pop().
if p.closed {
return nil, fmt.Errorf(queueClosed)
}
p.cond.Wait()
}
obj, err := p.activeQ.Pop()
if err != nil {
return nil, err
}
pod := obj.(*v1.Pod)
p.deleteNominatedPodIfExists(pod)
p.receivedMoveRequest = false
return pod, err
}
// isPodUpdated checks if the pod is updated in a way that it may have become
// schedulable. It drops status of the pod and compares it with old version.
func isPodUpdated(oldPod, newPod *v1.Pod) bool {
strip := func(pod *v1.Pod) *v1.Pod {
p := pod.DeepCopy()
p.ResourceVersion = ""
p.Generation = 0
p.Status = v1.PodStatus{}
return p
}
return !reflect.DeepEqual(strip(oldPod), strip(newPod))
}
// Update updates a pod in the active queue if present. Otherwise, it removes
// the item from the unschedulable queue and adds the updated one to the active
// queue.
func (p *PriorityQueue) Update(oldPod, newPod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
// If the pod is already in the active queue, just update it there.
if _, exists, _ := p.activeQ.Get(newPod); exists {
p.updateNominatedPod(oldPod, newPod)
err := p.activeQ.Update(newPod)
return err
}
// If the pod is in the unschedulable queue, updating it may make it schedulable.
if usPod := p.unschedulableQ.get(newPod); usPod != nil {
p.updateNominatedPod(oldPod, newPod)
if isPodUpdated(oldPod, newPod) {
p.unschedulableQ.delete(usPod)
err := p.activeQ.Add(newPod)
if err == nil {
p.cond.Broadcast()
}
return err
}
p.unschedulableQ.addOrUpdate(newPod)
return nil
}
// If pod is not in any of the two queue, we put it in the active queue.
err := p.activeQ.Add(newPod)
if err == nil {
p.addNominatedPodIfNeeded(newPod)
p.cond.Broadcast()
}
return err
}
// Delete deletes the item from either of the two queues. It assumes the pod is
// only in one queue.
func (p *PriorityQueue) Delete(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
p.deleteNominatedPodIfExists(pod)
err := p.activeQ.Delete(pod)
if err != nil { // The item was probably not found in the activeQ.
p.unschedulableQ.delete(pod)
}
return nil
}
// AssignedPodAdded is called when a bound pod is added. Creation of this pod
// may make pending pods with matching affinity terms schedulable.
func (p *PriorityQueue) AssignedPodAdded(pod *v1.Pod) {
p.movePodsToActiveQueue(p.getUnschedulablePodsWithMatchingAffinityTerm(pod))
}
// AssignedPodUpdated is called when a bound pod is updated. Change of labels
// may make pending pods with matching affinity terms schedulable.
func (p *PriorityQueue) AssignedPodUpdated(pod *v1.Pod) {
p.movePodsToActiveQueue(p.getUnschedulablePodsWithMatchingAffinityTerm(pod))
}
// MoveAllToActiveQueue moves all pods from unschedulableQ to activeQ. This
// function adds all pods and then signals the condition variable to ensure that
// if Pop() is waiting for an item, it receives it after all the pods are in the
// queue and the head is the highest priority pod.
// TODO(bsalamat): We should add a back-off mechanism here so that a high priority
// pod which is unschedulable does not go to the head of the queue frequently. For
// example in a cluster where a lot of pods being deleted, such a high priority
// pod can deprive other pods from getting scheduled.
func (p *PriorityQueue) MoveAllToActiveQueue() {
p.lock.Lock()
defer p.lock.Unlock()
for _, pod := range p.unschedulableQ.pods {
if err := p.activeQ.Add(pod); err != nil {
glog.Errorf("Error adding pod %v/%v to the scheduling queue: %v", pod.Namespace, pod.Name, err)
}
}
p.unschedulableQ.clear()
p.receivedMoveRequest = true
p.cond.Broadcast()
}
func (p *PriorityQueue) movePodsToActiveQueue(pods []*v1.Pod) {
p.lock.Lock()
defer p.lock.Unlock()
for _, pod := range pods {
if err := p.activeQ.Add(pod); err == nil {
p.unschedulableQ.delete(pod)
} else {
glog.Errorf("Error adding pod %v/%v to the scheduling queue: %v", pod.Namespace, pod.Name, err)
}
}
p.receivedMoveRequest = true
p.cond.Broadcast()
}
// getUnschedulablePodsWithMatchingAffinityTerm returns unschedulable pods which have
// any affinity term that matches "pod".
func (p *PriorityQueue) getUnschedulablePodsWithMatchingAffinityTerm(pod *v1.Pod) []*v1.Pod {
p.lock.RLock()
defer p.lock.RUnlock()
var podsToMove []*v1.Pod
for _, up := range p.unschedulableQ.pods {
affinity := up.Spec.Affinity
if affinity != nil && affinity.PodAffinity != nil {
terms := predicates.GetPodAffinityTerms(affinity.PodAffinity)
for _, term := range terms {
namespaces := priorityutil.GetNamespacesFromPodAffinityTerm(up, &term)
selector, err := metav1.LabelSelectorAsSelector(term.LabelSelector)
if err != nil {
glog.Errorf("Error getting label selectors for pod: %v.", up.Name)
}
if priorityutil.PodMatchesTermsNamespaceAndSelector(pod, namespaces, selector) {
podsToMove = append(podsToMove, up)
break
}
}
}
}
return podsToMove
}
// WaitingPodsForNode returns pods that are nominated to run on the given node,
// but they are waiting for other pods to be removed from the node before they
// can be actually scheduled.
func (p *PriorityQueue) WaitingPodsForNode(nodeName string) []*v1.Pod {
p.lock.RLock()
defer p.lock.RUnlock()
if list, ok := p.nominatedPods[nodeName]; ok {
return list
}
return nil
}
// WaitingPods returns all the waiting pods in the queue.
func (p *PriorityQueue) WaitingPods() []*v1.Pod {
p.lock.Lock()
defer p.lock.Unlock()
result := []*v1.Pod{}
for _, pod := range p.activeQ.List() {
result = append(result, pod.(*v1.Pod))
}
for _, pod := range p.unschedulableQ.pods {
result = append(result, pod)
}
return result
}
// Close closes the priority queue.
func (p *PriorityQueue) Close() {
p.lock.Lock()
defer p.lock.Unlock()
p.closed = true
p.cond.Broadcast()
}
// UnschedulablePodsMap holds pods that cannot be scheduled. This data structure
// is used to implement unschedulableQ.
type UnschedulablePodsMap struct {
// pods is a map key by a pod's full-name and the value is a pointer to the pod.
pods map[string]*v1.Pod
keyFunc func(*v1.Pod) string
}
// Add adds a pod to the unschedulable pods.
func (u *UnschedulablePodsMap) addOrUpdate(pod *v1.Pod) {
u.pods[u.keyFunc(pod)] = pod
}
// Delete deletes a pod from the unschedulable pods.
func (u *UnschedulablePodsMap) delete(pod *v1.Pod) {
delete(u.pods, u.keyFunc(pod))
}
// Get returns the pod if a pod with the same key as the key of the given "pod"
// is found in the map. It returns nil otherwise.
func (u *UnschedulablePodsMap) get(pod *v1.Pod) *v1.Pod {
podKey := u.keyFunc(pod)
if p, exists := u.pods[podKey]; exists {
return p
}
return nil
}
// Clear removes all the entries from the unschedulable maps.
func (u *UnschedulablePodsMap) clear() {
u.pods = make(map[string]*v1.Pod)
}
// newUnschedulablePodsMap initializes a new object of UnschedulablePodsMap.
func newUnschedulablePodsMap() *UnschedulablePodsMap {
return &UnschedulablePodsMap{
pods: make(map[string]*v1.Pod),
keyFunc: util.GetPodFullName,
}
}
// Below is the implementation of the a heap. The logic is pretty much the same
// as cache.heap, however, this heap does not perform synchronization. It leaves
// synchronization to the SchedulingQueue.
// LessFunc is a function type to compare two objects.
type LessFunc func(interface{}, interface{}) bool
// KeyFunc is a function type to get the key from an object.
type KeyFunc func(obj interface{}) (string, error)
type heapItem struct {
obj interface{} // The object which is stored in the heap.
index int // The index of the object's key in the Heap.queue.
}
type itemKeyValue struct {
key string
obj interface{}
}
// heapData is an internal struct that implements the standard heap interface
// and keeps the data stored in the heap.
type heapData struct {
// items is a map from key of the objects to the objects and their index.
// We depend on the property that items in the map are in the queue and vice versa.
items map[string]*heapItem
// queue implements a heap data structure and keeps the order of elements
// according to the heap invariant. The queue keeps the keys of objects stored
// in "items".
queue []string
// keyFunc is used to make the key used for queued item insertion and retrieval, and
// should be deterministic.
keyFunc KeyFunc
// lessFunc is used to compare two objects in the heap.
lessFunc LessFunc
}
var (
_ = heap.Interface(&heapData{}) // heapData is a standard heap
)
// Less compares two objects and returns true if the first one should go
// in front of the second one in the heap.
func (h *heapData) Less(i, j int) bool {
if i > len(h.queue) || j > len(h.queue) {
return false
}
itemi, ok := h.items[h.queue[i]]
if !ok {
return false
}
itemj, ok := h.items[h.queue[j]]
if !ok {
return false
}
return h.lessFunc(itemi.obj, itemj.obj)
}
// Len returns the number of items in the Heap.
func (h *heapData) Len() int { return len(h.queue) }
// Swap implements swapping of two elements in the heap. This is a part of standard
// heap interface and should never be called directly.
func (h *heapData) Swap(i, j int) {
h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
item := h.items[h.queue[i]]
item.index = i
item = h.items[h.queue[j]]
item.index = j
}
// Push is supposed to be called by heap.Push only.
func (h *heapData) Push(kv interface{}) {
keyValue := kv.(*itemKeyValue)
n := len(h.queue)
h.items[keyValue.key] = &heapItem{keyValue.obj, n}
h.queue = append(h.queue, keyValue.key)
}
// Pop is supposed to be called by heap.Pop only.
func (h *heapData) Pop() interface{} {
key := h.queue[len(h.queue)-1]
h.queue = h.queue[0 : len(h.queue)-1]
item, ok := h.items[key]
if !ok {
// This is an error
return nil
}
delete(h.items, key)
return item.obj
}
// Heap is a producer/consumer queue that implements a heap data structure.
// It can be used to implement priority queues and similar data structures.
type Heap struct {
// data stores objects and has a queue that keeps their ordering according
// to the heap invariant.
data *heapData
}
// Add inserts an item, and puts it in the queue. The item is updated if it
// already exists.
func (h *Heap) Add(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
// the key is present in the map, no changes is made to the item.
func (h *Heap) AddIfNotPresent(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; !exists {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// Update is the same as Add in this implementation. When the item does not
// exist, it is added.
func (h *Heap) Update(obj interface{}) error {
return h.Add(obj)
}
// Delete removes an item.
func (h *Heap) Delete(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if item, ok := h.data.items[key]; ok {
heap.Remove(h.data, item.index)
return nil
}
return fmt.Errorf("object not found")
}
// Pop returns the head of the heap.
func (h *Heap) Pop() (interface{}, error) {
obj := heap.Pop(h.data)
if obj != nil {
return obj, nil
}
return nil, fmt.Errorf("object was removed from heap data")
}
// Get returns the requested item, or sets exists=false.
func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
key, err := h.data.keyFunc(obj)
if err != nil {
return nil, false, cache.KeyError{Obj: obj, Err: err}
}
return h.GetByKey(key)
}
// GetByKey returns the requested item, or sets exists=false.
func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
item, exists := h.data.items[key]
if !exists {
return nil, false, nil
}
return item.obj, true, nil
}
// List returns a list of all the items.
func (h *Heap) List() []interface{} {
list := make([]interface{}, 0, len(h.data.items))
for _, item := range h.data.items {
list = append(list, item.obj)
}
return list
}
// newHeap returns a Heap which can be used to queue up items to process.
func newHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
return &Heap{
data: &heapData{
items: map[string]*heapItem{},
queue: []string{},
keyFunc: keyFn,
lessFunc: lessFn,
},
}
}