forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpu_device_plugin.go
167 lines (139 loc) · 6.27 KB
/
gpu_device_plugin.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package e2e_node
import (
"strconv"
"time"
"k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/kubernetes/pkg/features"
"k8s.io/kubernetes/pkg/kubelet/apis/kubeletconfig"
kubeletmetrics "k8s.io/kubernetes/pkg/kubelet/metrics"
"k8s.io/kubernetes/test/e2e/framework"
"k8s.io/kubernetes/test/e2e/framework/metrics"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
"github.com/prometheus/common/model"
)
const (
devicePluginFeatureGate = "DevicePlugins=true"
testPodNamePrefix = "nvidia-gpu-"
)
// Serial because the test restarts Kubelet
var _ = framework.KubeDescribe("NVIDIA GPU Device Plugin [Feature:GPUDevicePlugin] [Serial] [Disruptive]", func() {
f := framework.NewDefaultFramework("device-plugin-gpus-errors")
Context("DevicePlugin", func() {
By("Enabling support for Device Plugin")
tempSetCurrentKubeletConfig(f, func(initialConfig *kubeletconfig.KubeletConfiguration) {
initialConfig.FeatureGates[string(features.DevicePlugins)] = true
})
var devicePluginPod *v1.Pod
BeforeEach(func() {
By("Ensuring that Nvidia GPUs exists on the node")
if !checkIfNvidiaGPUsExistOnNode() {
Skip("Nvidia GPUs do not exist on the node. Skipping test.")
}
framework.WaitForAllNodesSchedulable(f.ClientSet, framework.TestContext.NodeSchedulableTimeout)
By("Creating the Google Device Plugin pod for NVIDIA GPU in GKE")
devicePluginPod = f.PodClient().CreateSync(framework.NVIDIADevicePlugin(f.Namespace.Name))
By("Waiting for GPUs to become available on the local node")
Eventually(func() bool {
return framework.NumberOfNVIDIAGPUs(getLocalNode(f)) > 0
}, 10*time.Second, framework.Poll).Should(BeTrue())
if framework.NumberOfNVIDIAGPUs(getLocalNode(f)) < 2 {
Skip("Not enough GPUs to execute this test (at least two needed)")
}
})
AfterEach(func() {
l, err := f.PodClient().List(metav1.ListOptions{})
framework.ExpectNoError(err)
for _, p := range l.Items {
if p.Namespace != f.Namespace.Name {
continue
}
f.PodClient().Delete(p.Name, &metav1.DeleteOptions{})
}
})
It("checks that when Kubelet restarts exclusive GPU assignation to pods is kept.", func() {
By("Creating one GPU pod on a node with at least two GPUs")
podRECMD := "devs=$(ls /dev/ | egrep '^nvidia[0-9]+$') && echo gpu devices: $devs"
p1 := f.PodClient().CreateSync(makeBusyboxPod(framework.NVIDIAGPUResourceName, podRECMD))
deviceIDRE := "gpu devices: (nvidia[0-9]+)"
count1, devId1 := parseLogFromNRuns(f, p1.Name, p1.Name, 1, deviceIDRE)
p1, err := f.PodClient().Get(p1.Name, metav1.GetOptions{})
framework.ExpectNoError(err)
By("Restarting Kubelet and waiting for the current running pod to restart")
restartKubelet()
By("Confirming that after a kubelet and pod restart, GPU assignement is kept")
count1, devIdRestart1 := parseLogFromNRuns(f, p1.Name, p1.Name, count1+1, deviceIDRE)
Expect(devIdRestart1).To(Equal(devId1))
By("Restarting Kubelet and creating another pod")
restartKubelet()
p2 := f.PodClient().CreateSync(makeBusyboxPod(framework.NVIDIAGPUResourceName, podRECMD))
By("Checking that pods got a different GPU")
count2, devId2 := parseLogFromNRuns(f, p2.Name, p2.Name, 1, deviceIDRE)
Expect(devId1).To(Not(Equal(devId2)))
By("Deleting device plugin.")
f.PodClient().Delete(devicePluginPod.Name, &metav1.DeleteOptions{})
By("Waiting for GPUs to become unavailable on the local node")
Eventually(func() bool {
node, err := f.ClientSet.CoreV1().Nodes().Get(framework.TestContext.NodeName, metav1.GetOptions{})
framework.ExpectNoError(err)
return framework.NumberOfNVIDIAGPUs(node) <= 0
}, 10*time.Minute, framework.Poll).Should(BeTrue())
By("Checking that scheduled pods can continue to run even after we delete device plugin.")
count1, devIdRestart1 = parseLogFromNRuns(f, p1.Name, p1.Name, count1+1, deviceIDRE)
Expect(devIdRestart1).To(Equal(devId1))
count2, devIdRestart2 := parseLogFromNRuns(f, p2.Name, p2.Name, count2+1, deviceIDRE)
Expect(devIdRestart2).To(Equal(devId2))
By("Restarting Kubelet.")
restartKubelet()
By("Checking that scheduled pods can continue to run even after we delete device plugin and restart Kubelet.")
count1, devIdRestart1 = parseLogFromNRuns(f, p1.Name, p1.Name, count1+2, deviceIDRE)
Expect(devIdRestart1).To(Equal(devId1))
count2, devIdRestart2 = parseLogFromNRuns(f, p2.Name, p2.Name, count2+2, deviceIDRE)
Expect(devIdRestart2).To(Equal(devId2))
logDevicePluginMetrics()
// Cleanup
f.PodClient().DeleteSync(p1.Name, &metav1.DeleteOptions{}, framework.DefaultPodDeletionTimeout)
f.PodClient().DeleteSync(p2.Name, &metav1.DeleteOptions{}, framework.DefaultPodDeletionTimeout)
})
})
})
func logDevicePluginMetrics() {
ms, err := metrics.GrabKubeletMetricsWithoutProxy(framework.TestContext.NodeName + ":10255")
framework.ExpectNoError(err)
for msKey, samples := range ms {
switch msKey {
case kubeletmetrics.KubeletSubsystem + "_" + kubeletmetrics.DevicePluginAllocationLatencyKey:
for _, sample := range samples {
latency := sample.Value
resource := string(sample.Metric["resource_name"])
var quantile float64
if val, ok := sample.Metric[model.QuantileLabel]; ok {
var err error
if quantile, err = strconv.ParseFloat(string(val), 64); err != nil {
continue
}
framework.Logf("Metric: %v ResourceName: %v Quantile: %v Latency: %v", msKey, resource, quantile, latency)
}
}
case kubeletmetrics.KubeletSubsystem + "_" + kubeletmetrics.DevicePluginRegistrationCountKey:
for _, sample := range samples {
resource := string(sample.Metric["resource_name"])
count := sample.Value
framework.Logf("Metric: %v ResourceName: %v Count: %v", msKey, resource, count)
}
}
}
}