-
Notifications
You must be signed in to change notification settings - Fork 193
/
reshape.py
150 lines (131 loc) · 3.75 KB
/
reshape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import absolute_import, print_function, division
# melt()
########
import petl as etl
table1 = [['id', 'gender', 'age'],
[1, 'F', 12],
[2, 'M', 17],
[3, 'M', 16]]
table2 = etl.melt(table1, 'id')
table2.lookall()
# compound keys are supported
table3 = [['id', 'time', 'height', 'weight'],
[1, 11, 66.4, 12.2],
[2, 16, 53.2, 17.3],
[3, 12, 34.5, 9.4]]
table4 = etl.melt(table3, key=['id', 'time'])
table4.lookall()
# a subset of variable fields can be selected
table5 = etl.melt(table3, key=['id', 'time'],
variables=['height'])
table5.lookall()
# recast()
##########
import petl as etl
table1 = [['id', 'variable', 'value'],
[3, 'age', 16],
[1, 'gender', 'F'],
[2, 'gender', 'M'],
[2, 'age', 17],
[1, 'age', 12],
[3, 'gender', 'M']]
table2 = etl.recast(table1)
table2
# specifying variable and value fields
table3 = [['id', 'vars', 'vals'],
[3, 'age', 16],
[1, 'gender', 'F'],
[2, 'gender', 'M'],
[2, 'age', 17],
[1, 'age', 12],
[3, 'gender', 'M']]
table4 = etl.recast(table3, variablefield='vars', valuefield='vals')
table4
# if there are multiple values for each key/variable pair, and no
# reducers function is provided, then all values will be listed
table6 = [['id', 'time', 'variable', 'value'],
[1, 11, 'weight', 66.4],
[1, 14, 'weight', 55.2],
[2, 12, 'weight', 53.2],
[2, 16, 'weight', 43.3],
[3, 12, 'weight', 34.5],
[3, 17, 'weight', 49.4]]
table7 = etl.recast(table6, key='id')
table7
# multiple values can be reduced via an aggregation function
def mean(values):
return float(sum(values)) / len(values)
table8 = etl.recast(table6, key='id', reducers={'weight': mean})
table8
# missing values are padded with whatever is provided via the
# missing keyword argument (None by default)
table9 = [['id', 'variable', 'value'],
[1, 'gender', 'F'],
[2, 'age', 17],
[1, 'age', 12],
[3, 'gender', 'M']]
table10 = etl.recast(table9, key='id')
table10
# transpose()
#############
import petl as etl
table1 = [['id', 'colour'],
[1, 'blue'],
[2, 'red'],
[3, 'purple'],
[5, 'yellow'],
[7, 'orange']]
table2 = etl.transpose(table1)
table2
# pivot()
#########
import petl as etl
table1 = [['region', 'gender', 'style', 'units'],
['east', 'boy', 'tee', 12],
['east', 'boy', 'golf', 14],
['east', 'boy', 'fancy', 7],
['east', 'girl', 'tee', 3],
['east', 'girl', 'golf', 8],
['east', 'girl', 'fancy', 18],
['west', 'boy', 'tee', 12],
['west', 'boy', 'golf', 15],
['west', 'boy', 'fancy', 8],
['west', 'girl', 'tee', 6],
['west', 'girl', 'golf', 16],
['west', 'girl', 'fancy', 1]]
table2 = etl.pivot(table1, 'region', 'gender', 'units', sum)
table2
table3 = etl.pivot(table1, 'region', 'style', 'units', sum)
table3
table4 = etl.pivot(table1, 'gender', 'style', 'units', sum)
table4
# flatten()
###########
import petl as etl
table1 = [['foo', 'bar', 'baz'],
['A', 1, True],
['C', 7, False],
['B', 2, False],
['C', 9, True]]
list(etl.flatten(table1))
# unflatten()
#############
import petl as etl
a = ['A', 1, True, 'C', 7, False, 'B', 2, False, 'C', 9]
table1 = etl.unflatten(a, 3)
table1
# a table and field name can also be provided as arguments
table2 = [['lines'],
['A'],
[1],
[True],
['C'],
[7],
[False],
['B'],
[2],
[False],
['C'],
[9]]
table3 = etl.unflatten(table2, 'lines', 3)
table3