-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
93 lines (75 loc) · 3.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import openai
import streamlit as st
from youtube_transcript_api import YouTubeTranscriptApi
from langchain.text_splitter import RecursiveCharacterTextSplitter
from dotenv import load_dotenv, find_dotenv
# Specify the path to your .env file
env_path = '/home/USER/.env/openai_api' # Change the Path
# Load the OpenAI API key from the .env file
load_dotenv(env_path)
openai.api_key = os.getenv('OPENAI_API_KEY')
def get_transcript(youtube_url):
video_id = youtube_url.split("v=")[-1]
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
# Try fetching the manual transcript
try:
transcript = transcript_list.find_manually_created_transcript()
language_code = transcript.language_code # Save the detected language
except:
# If no manual transcript is found, try fetching an auto-generated transcript in a supported language
try:
generated_transcripts = [trans for trans in transcript_list if trans.is_generated]
transcript = generated_transcripts[0]
language_code = transcript.language_code # Save the detected language
except:
# If no auto-generated transcript is found, raise an exception
raise Exception("No suitable transcript found.")
full_transcript = " ".join([part['text'] for part in transcript.fetch()])
return full_transcript, language_code # Return both the transcript and detected language
def summarize_with_langchain_and_openai(transcript, language_code, model_name='gpt-3.5-turbo'):
# Split the document if it's too long
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
texts = text_splitter.split_text(transcript)
text_to_summarize = " ".join(texts[:4]) # Adjust this as needed
# Prepare the prompt for summarization
system_prompt = 'I want you to act as a Life Coach that can create good summaries!'
prompt = f'''Summarize the following text in {language_code}.
Text: {text_to_summarize}
Add a title to the summary in {language_code}.
Include an INTRODUCTION, BULLET POINTS if possible, and a CONCLUSION in {language_code}.'''
# Start summarizing using OpenAI
response = openai.ChatCompletion.create(
model=model_name,
messages=[
{'role': 'system', 'content': system_prompt},
{'role': 'user', 'content': prompt}
],
temperature=1
)
return response['choices'][0]['message']['content']
def main():
st.title('YouTube video summarizer')
link = st.text_input('Enter the link of the YouTube video you want to summarize:')
if st.button('Start'):
if link:
try:
progress = st.progress(0)
status_text = st.empty()
status_text.text('Loading the transcript...')
progress.progress(25)
# Getting both the transcript and language_code
transcript, language_code = get_transcript(link)
status_text.text(f'Creating summary...')
progress.progress(75)
model_name = 'gpt-3.5-turbo'
summary = summarize_with_langchain_and_openai(transcript, language_code, model_name)
status_text.text('Summary:')
st.markdown(summary)
progress.progress(100)
except Exception as e:
st.write(str(e))
else:
st.write('Please enter a valid YouTube link.')
if __name__ == "__main__":
main()