You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I run the command
python examples/train_task.py --algo_name=mopo --exp_name=halfcheetah --task HalfCheetah-v3 --task_data_type low --task_train_num 2
It shows :
File "examples/train_task.py", line 19, in <module>
fire.Fire(run_algo)
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/fire/core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/fire/core.py", line 466, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/fire/core.py", line 681, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "examples/train_task.py", line 16, in run_algo
algo_trainer.train(train_buffer, val_buffer, callback_fn=callback)
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/algo/modelbase/mopo.py", line 94, in train
self.train_policy(train_buffer, val_buffer, self.transition, callback_fn)
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/algo/modelbase/mopo.py", line 206, in train_policy
res = callback_fn(self.get_policy())
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/evaluation/__init__.py", line 80, in __call__
eval_res.update(test_on_real_env(policy, self.env, number_of_runs=self.number_of_runs))
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/evaluation/neorl.py", line 54, in test_on_real_env
results = [test_one_trail_sp_local(env, policy) for _ in range(number_of_runs)]
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/evaluation/neorl.py", line 54, in <listcomp>
results = [test_one_trail_sp_local(env, policy) for _ in range(number_of_runs)]
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/evaluation/neorl.py", line 39, in test_one_trail_sp_local
action = policy.get_action(state).reshape(-1, act_dim)
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/utils/net/common.py", line 33, in get_action
act = to_array_as(self.policy_infer(obs_tensor), obs)
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/utils/net/tanhpolicy.py", line 164, in policy_infer
return self(obs).mode
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/utils/net/tanhpolicy.py", line 147, in forward
logits, h = self.preprocess(obs, state)
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/media/lksgcc/new_disk/lk_git/3_Reinforcement_Learning/3_2_Offline_Learning/OfflineRL/offlinerl/utils/net/common.py", line 113, in forward
logits = self.model(s)
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/torch/nn/modules/container.py", line 141, in forward
input = module(input)
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/home/lksgcc/.pyenv/versions/anaconda3-5.0.1/envs/mujoco_py/lib/python3.8/site-packages/torch/nn/modules/linear.py", line 103, in forward
return F.linear(input, self.weight, self.bias)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (18x1 and 18x256)
Other algos also show the same error. Thanks for solving this problem!
The text was updated successfully, but these errors were encountered:
Hi @lk1983823, I have faced with ur bug and I think what happens in here is that the shape of the state is not in the right way. State must has its shape like [batch_size, num_feats]. So I change a little bit in the file offlinerl/evaluation/neorl.py, from action = policy.get_action(state).reshape(-1, act_dim) to if len(state.shape) == 1: state = state.reshape(-1, state.shape[0]) action = policy.get_action(state).reshape(-1, act_dim) if len(action.shape) == 1: action = action.reshape(-1, action.shape[0])
Hope it can help.
When I run the command
python examples/train_task.py --algo_name=mopo --exp_name=halfcheetah --task HalfCheetah-v3 --task_data_type low --task_train_num 2
It shows :
Other algos also show the same error. Thanks for solving this problem!
The text was updated successfully, but these errors were encountered: