-
Notifications
You must be signed in to change notification settings - Fork 19
/
test.py
executable file
·367 lines (282 loc) · 17.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from argparse import ArgumentParser
import copy
from easydict import EasyDict as edict
import logging
import logging.config
import numpy as np
import os
import sys
import torch
from lib import cfg_utils, fdutil, io_control_file, rasterutils, utils, validate_cfg_inference
from lib.formatter import RawFormatter
from lib.UNet import UNet
from lib.evaluation import evaluate_performance, predict_linear_blend, get_statistics, print_statistics
RESIDUAL_THRESHOLD = None
parser = ArgumentParser(description='ResDepth:\nA Deep Prior For 3D Reconstruction From High-resolution Satellite '
'Images (Testing)',
formatter_class=RawFormatter)
parser.add_argument('config_file', type=str, help='JSON configuration file')
def main():
# Parse the command line arguments
args = parser.parse_args()
cfg_file = args.config_file
prog_name = 'Running ResDepth: Prediction'
print('\n{}\n{}\n'.format(prog_name, '=' * len(prog_name)))
if not fdutil.file_exists(cfg_file):
print('ERROR: Cannot find the configuration file: {}'.format(cfg_file))
sys.exit(1)
# Set up Logger
logger = utils.setup_logger('root_logger', level=logging.INFO, log_to_console=True, log_file=None)
# Verify the configuration file
print(f'Validate the configuration file:\t{cfg_file}\n\n')
eval_cfg = validate_cfg_inference.validate_and_update_cfg_file(cfg_file, logger)
if eval_cfg.status is False:
sys.exit(1)
else:
cfg = copy.deepcopy(eval_cfg.cfg)
cfg_orig = cfg_utils.read_json(cfg_file)
del eval_cfg
# Add a file handler to the logger
utils.add_file_logger(logger, log_file=os.path.join(cfg.output.directory, 'run.log'))
# -------------------------- Data allocation, normalization parameters -------------------------- #
logger.info('Perform data allocation...')
utils.allocate_area(cfg)
logger.info('\nData initialization\n-------------------\n')
if cfg.model.input_channels != 'geom':
logger.info('Read image pairs...\n')
if utils.read_image_pairs(cfg, logger) is False:
sys.exit(1)
logger.info('Read normalization parameters...')
params_dsm = edict(io_control_file.read_normalization_params_from_file(cfg.model.normalization_geom))
if cfg.model.input_channels != 'geom':
params_images = edict(io_control_file.read_normalization_params_from_file(cfg.model.normalization_image))
# Extract the definition of the test dataset(s)
cfg_data = utils.prepare_dataset_configuration(cfg, phase='test')
# Save normalization parameters
for i, dataset in enumerate(cfg_data):
dataset.dsm_mean = None
dataset.dsm_std = params_dsm['std']
if cfg.model.input_channels != 'geom':
dataset.images_mean = params_images['mean']
dataset.images_std = params_images['std']
# ----------------------------------------- Load model ----------------------------------------- #
logger.info('\n\nDefine model\n------------\n')
logger.info('Initialize model...')
if cfg.model.name == 'UNet':
model = UNet(**cfg.model.settings)
else:
logger.error('Unknown model architecture.\n')
sys.exit(1)
# Load weights
logger.info(f"Load model weights: {cfg.model.weights}")
model.load_state_dict(torch.load(cfg.model.weights)['model_state_dict'])
model.eval()
# ----------------------------------------- Apply model ----------------------------------------- #
logger.info('\n\nInference\n---------\n')
logger_index = -1
for index, dataset in enumerate(cfg_data):
utils.print_dataset_name_to_console(dataset, index, logger)
area_to_predict = f"_{dataset.area_type}_area" if 'area_type' in dataset else ''
name = dataset.name if 'name' in dataset else 'dataset_' + str(index)
# Create an output directory per test dataset
output_directory_parent = os.path.join(cfg.output.directory, name)
fdutil.make_dir(output_directory_parent)
# Write the original user input configuration to file
config_file = os.path.join(output_directory_parent, 'config.json.orig')
cfg_utils.write_json(cfg_orig, config_file)
# Write the final configuration to file
config_file = os.path.join(output_directory_parent, 'config.json')
cfg_utils.write_json(cfg, config_file)
if cfg.model.input_channels != 'geom':
image_pairs = dataset.image_pairs
else:
# Dummy variable such that the for-loop below is accessible for evaluating ResDepth-0
image_pairs = [None]
# Extract the name of the initial DSM raster
basename = fdutil.filename_wo_ext(dataset.raster_in)
# Initialize the residual errors over all stereo pairs
list_all_residuals = []
list_all_residuals_building = []
list_all_residuals_terrain = []
list_all_residuals_terrain_nowater = []
list_all_residuals_terrain_nowater_noforest = []
for p, image_pair in enumerate(image_pairs):
if cfg.model.input_channels != 'geom':
# Create a subdirectory for each evaluated image (pair)
if len(image_pair) == 1:
foldername = 'Image'
elif len(image_pair) == 2:
foldername = 'Stereopair'
else:
foldername = 'Imagepair'
list_image_names = []
for image_index in image_pair:
foldername += f'_{image_index}'
list_image_names.append(fdutil.filename(dataset.image_list[image_index]))
output_directory = os.path.join(output_directory_parent, foldername)
fdutil.make_dir(output_directory)
# Print image (pair) being evaluated
if len(list_image_names) == 1:
logger.info(f'\n\nInference using the following image:')
logger.info(f'Image {image_pair[0]}:\t{list_image_names[0]}\n')
elif len(list_image_names) == 2:
logger.info(f'\nInference using the following stereo pair: {image_pair}')
logger.info(f'Image {image_pair[0]}:\t{list_image_names[0]}')
logger.info(f'Image {image_pair[1]}:\t{list_image_names[1]}\n')
else:
logger.info(f'\nInference using the following images: {image_pair}')
for k, image_name in enumerate(list_image_names):
logger.info(f'Image {image_pair[k]}:\t{image_name}')
logger.info('\n')
dataset.image_pairs = [image_pair]
dataloader = utils.get_dataloader([dataset], sampling_strategy='test',
transform_dsm=True, transform_orthos=True,
use_all_stereo_pairs=False, permute_images_within_pair=False,
input_channels=cfg.model.input_channels,
tile_size=cfg.general.tile_size, augment=False, batch_size=1,
shuffle=False, workers=cfg.general.workers, pin_memory=True)
else:
logger.info(f'Inference without image guidance.\n')
output_directory = output_directory_parent
dataloader = utils.get_dataloader([dataset], sampling_strategy='test',
transform_dsm=True, transform_orthos=False,
use_all_stereo_pairs=False, permute_images_within_pair=False,
input_channels=cfg.model.input_channels,
tile_size=cfg.general.tile_size, augment=False, batch_size=1,
shuffle=False, workers=cfg.general.workers, pin_memory=True)
logger.info('Predict...')
prediction = predict_linear_blend(dataloader, model)
if 'raster_gt' in dataset:
logger.info('Evaluate...')
# Evaluate performance and write statistics to file
filename = f'{basename}_prediction{area_to_predict}_statistics.txt'
file_stats = os.path.join(output_directory, filename)
logger_index += 1
logger_stats = utils.setup_logger(f'stats_logger{logger_index}', level=logging.INFO,
log_to_console=False, log_file=file_stats)
logger_stats.info(f"Model name:\t{cfg.model.name}")
logger_stats.info(f"Model weights:\t{cfg.model.weights}\n\n\n")
utils.add_console_logger(logger_stats)
residuals = evaluate_performance(prediction, dataloader.dataset.dsm_input_gdal,
dataloader.dataset.dsm_target_gdal, logger,
dataset.area_defn, dataset.mask_ground_truth, dataset.mask_building,
dataset.mask_water, dataset.mask_forest,
logger_stats, RESIDUAL_THRESHOLD)
logger.info('\n\nSave prediction...')
# Number of regions specified in area_defn
num_regions = len(dataloader.dataset.area_defn.x_extent)
# Export the refined DSM and its residual error map as GeoTiffs
for i in range(num_regions):
x = dataloader.dataset.area_defn.x_extent[i]
y = dataloader.dataset.area_defn.y_extent[i]
if num_regions == 1:
name1 = f'{basename}_prediction{area_to_predict}.tif'
name2 = f'{basename}_residuals{area_to_predict}.tif'
else:
name1 = f'{basename}_prediction{area_to_predict}_{i}.tif'
name2 = f'{basename}_residuals{area_to_predict}_{i}.tif'
file_prediction = os.path.join(output_directory, name1)
file_residuals = os.path.join(output_directory, name2)
prediction_i = prediction[y[0]:y[1]+1, x[0]:x[1]+1]
residuals_i = residuals.all[y[0]:y[1]+1, x[0]:x[1]+1]
# Save the residual errors for later (to compute statistics averaged over all predictions)
list_all_residuals.append(residuals_i.compressed())
# Replace masked pixels with the nodata value -9999
residuals_i[residuals_i.mask] = -9999
logger.info('Write file: {}'.format(file_prediction))
rasterutils.export_data_as_raster(dataloader.dataset.dsm_input_gdal, file_prediction,
prediction_i, x[0], y[0], nodata=-9999)
logger.info('Write file: {}'.format(file_residuals))
rasterutils.export_data_as_raster(dataloader.dataset.dsm_input_gdal, file_residuals,
residuals_i, x[0], y[0], nodata=-9999)
if 'building' in residuals:
list_all_residuals_building.append(residuals.building[y[0]:y[1]+1, x[0]:x[1]+1].compressed())
list_all_residuals_terrain.append(residuals.terrain[y[0]:y[1]+1, x[0]:x[1]+1].compressed())
if 'terrain_nowater' in residuals:
list_all_residuals_terrain_nowater.append(residuals.terrain_nowater[y[0]:y[1]+1,
x[0]:x[1]+1].compressed())
if 'terrain_nowater_noforest' in residuals:
list_all_residuals_terrain_nowater_noforest.append(residuals.terrain_nowater_noforest[y[0]:y[1]+1,
x[0]:x[1]+1].compressed())
logger.info('Write file: {}\n\n'.format(file_stats))
else:
logger.info('\n\nSave prediction...')
# Number of regions specified in area_defn
num_regions = len(dataloader.dataset.area_defn.x_extent)
# Export the refined DSM
for i in range(num_regions):
x = dataloader.dataset.area_defn.x_extent[i]
y = dataloader.dataset.area_defn.y_extent[i]
if num_regions == 1:
name = f'{basename}_prediction{area_to_predict}.tif'
else:
name = f'{basename}_prediction{area_to_predict}_{i}.tif'
file_prediction = os.path.join(output_directory, name)
prediction_i = prediction[y[0]:y[1] + 1, x[0]:x[1] + 1]
# Replace masked pixels with the nodata value -9999
prediction_i[prediction_i == dataloader.dataset.nodata] = -9999
logger.info('Write file: {}\n\n'.format(file_prediction))
rasterutils.export_data_as_raster(dataloader.dataset.dsm_input_gdal, file_prediction,
prediction_i, x[0], y[0], nodata=-9999)
# Compute statistics over all predictions
if len(image_pairs) > 1 and 'raster_gt' in dataset:
logger.info('\nCompute residual errors averaged over all predictions...')
# Concatenate residual errors over all predictions
all_residuals = np.ma.array(list_all_residuals).flatten()
del list_all_residuals
stats = get_statistics(all_residuals, RESIDUAL_THRESHOLD)
if dataset.mask_building:
all_residuals_building = np.ma.array(list_all_residuals_building).flatten()
all_residuals_terrain = np.ma.array(list_all_residuals_terrain).flatten()
del list_all_residuals_building
del list_all_residuals_terrain
stats_building = get_statistics(all_residuals_building, RESIDUAL_THRESHOLD)
stats_terrain = get_statistics(all_residuals_terrain, RESIDUAL_THRESHOLD)
if dataset.mask_water:
all_residuals_terrain_nowater = np.ma.array(list_all_residuals_terrain_nowater).flatten()
del list_all_residuals_terrain_nowater
stats_terrain_nowater = get_statistics(all_residuals_terrain_nowater, RESIDUAL_THRESHOLD)
if dataset.mask_forest:
all_residuals_terrain_nowater_noforest = np.ma.array(list_all_residuals_terrain_nowater_noforest).flatten()
del list_all_residuals_terrain_nowater_noforest
stats_terrain_nowater_noforest = get_statistics(all_residuals_terrain_nowater_noforest,
RESIDUAL_THRESHOLD)
filename = f'{basename}_prediction{area_to_predict}_performance_statistics_mean_over_all_stereopairs.txt'
outfile = os.path.join(output_directory_parent, filename)
logger_stats_overall = utils.setup_logger('stats_logger_overall', level=logging.INFO, log_to_console=False,
log_file=outfile)
logger_stats_overall.info(f"Model name:\t{cfg.model.name}")
logger_stats_overall.info(f"Model weights:\t{cfg.model.weights}\n\n\n")
utils.add_console_logger(logger_stats_overall)
# Write statistics
logger_stats_overall.info('\nPerformance Evaluation: Statistics over all predictions\n'
'-------------------------------------------------------\n')
if RESIDUAL_THRESHOLD:
logger_stats_overall.info('Truncation threshold:\t\t\t{:.2f} m\n'.format(RESIDUAL_THRESHOLD))
logger_stats_overall.info('\nSTATISTICS, OVERALL: REFINED DSM\n--------------------------------\n')
print_statistics(stats, logger_stats_overall)
if dataset.mask_building:
logger_stats_overall.info('\nSTATISTICS, BUILDING PIXELS: REFINED DSM\n'
'----------------------------------------\n')
print_statistics(stats_building, logger_stats_overall)
logger_stats_overall.info('\nSTATISTICS, TERRAIN PIXELS: REFINED DSM\n'
'---------------------------------------\n')
print_statistics(stats_terrain, logger_stats_overall)
if dataset.mask_water:
logger_stats_overall.info('\nSTATISTICS, TERRAIN PIXELS WITHOUT WATER: REFINED DSM\n'
'-----------------------------------------------------\n')
print_statistics(stats_terrain_nowater, logger_stats_overall)
if dataset.mask_forest:
logger_stats_overall.info('\nSTATISTICS, TERRAIN PIXELS WITHOUT WATER/FOREST: REFINED DSM\n'
'------------------------------------------------------------\n')
print_statistics(stats_terrain_nowater_noforest, logger_stats_overall)
elif dataset.mask_forest:
logger_stats_overall.info('\nSTATISTICS, TERRAIN PIXELS WITHOUT FOREST: REFINED DSM\n'
'------------------------------------------------------\n')
print_statistics(stats_terrain_nowater_noforest, logger_stats_overall)
logger.info('\nDone!')
if __name__ == '__main__':
if len(sys.argv) < 2:
parser.print_help()
else:
main()