Skip to content
Switch branches/tags

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time


This is a Linux kernel-mode driver, intended as an enhancement/substitution of the standard Linux w1-gpio 1-wire bus master driver. Contrary to the standard driver, w1-gpio-cl is not a platform device driver, therefore doesn't need any specific device-tree overlay nor preconfigured kernel (except usual 1-wire support via the wire module). Moreover, there is possible coexistence between w1-gpio and w1-gpio-cl, provided no GPIOs conflict exists.

Module Configuration

w1-gpio-cl is fully configured via its command line parameters while loading the driver. The configuration allows to launch many 1-wire bus masters controlling different GPIO pins. For parasite powering support, it is possible to choose the type of the strong pull-up to be used.

General configuration syntax is:

modprobe w1-gpio-cl m1="gdt:num[,od][,bpu|gpu:num[,rev]]" [m2="..." ...]

NOTE: : and , syntax tokens may be replaced by = and ; respectively, so m1="gdt:4,od" is equivalent to m1="gdt:4;od", m1="gdt=4,od" or m1="gdt=4;od".

m1, m2, ... mN - configure up to N (where N=5 for the standard module compilation) bus masters, each one controlling different 1-wire bus connected to its GPIO pin (specified in gdt). At least one bus master specification (that is m1) must be provided. It's worth to note, the X index in mX parameter specifies an order in which bus masters are registered in the 1-wire subsystem. The index doesn't need to correspond to the bus master id assigned by the kernel.

Each of bus master configurations consist of set of parameters listed below:

  • gdt - specifies GPIO number associated with the 1-wire data wire (the 1-wire bus). This parameter is obligatory for each bus master specification.

  • od - if specified, the data wire GPIO (gdt) is of an open drain type.

  • bpu - if specified, parasite powering is enabled via the data wire strong pull-up bit-banging. This type of strong pull-up is possible only for non open-drain type of the data wire GPIO (gdt).

  • gpu - specifies GPIO number used for controlling strong pull-up for parasite powering. The GPIO is working in the output mode and is set to the low state if the strong pull-up is active, and to the high state otherwise.

    The strong pull-up controlled by the gpu GPIO is the only possibility for an open-drain type of the data wire GPIO (gdt). In this case the gpu GPIO may be connected to a P-channel MOSFET gate controlling the Vcc strong pull-up as presented on the following figure.

    External GPIO strong pull-up

    NOTE: In place of the MOSFET it's possible to use a PNP bipolar transistor with its emitter connected to Vcc, collector to the data wire and base to the controlling GPIO (gpu). If needed base-collector current reducing resistor shall be placed between the transistor's base and gpu pin.

  • rev - if specified and the gpu parameter is provided, the gpu GPIO logic is reversed for the strong pull-up activation: GPIO in the high state if the strong pull-up is active, low state - otherwise.

Example of Usage


In this example, there have been configured three bus masters:

  • 1st one on GPIO1 controlling non-parasitically powered thermometers.

  • 2nd one on GPIO2 controlling parasitically powered thermometers. Strong pull-up is performed via the data wire bit-banging (non open-drain data GPIO).

  • 3nd one devoted to handle iButton reader(s) only. Using separate 1-wire bus in this case is justified by the performance reason. The iButton bus is empty for most of its time, and is scanned/searched much more often than other buses for presence of authorized iButtons existence.

NOTE: GPIO1, GPIO2, GPIO3 are numbers specifying actual GPIO pins.

Compilation and Loading

The driver module may be compiled directly on the target machine or cross-compiled and the result to be copied into the target machine. If you are not familiar with the Linux kernel building process please refer to this link first. It provides good introduction to the topic of kernel compilation/cross-compilation for Raspberry Pi boards.


  • Building tool-set.

    • For compilation on the target machine Linux kernel building tools may be installed by (for Debian based systems):

      sudo apt-get install build-essential bc bison flex libssl-dev
    • For cross-compilation appropriate target system tool-chain need to be installed on the compiling machine (e.g. package crossbuild-essential-armhf for 32-bit or crossbuild-essential-arm64 for 64-bit ARM). Remaining tools to be installed on the compiling machine:

      sudo apt-get install make bc bison flex libssl-dev
  • Kernel headers and kbuild scripts corresponding to the target kernel.

    • For compilation on the target machine the required headers may be installed by:

      sudo apt-get install linux-headers-KERNEL_RELEASE

      where KERNEL_RELEASE corresponds to the kernel release version on the target (to be checked by uname -r). In case the package repository contains kernel headers corresponding to the current kernel image the following command will install appropriate headers on the target machine:

      sudo apt-get install linux-headers-`uname -r`

      In case the target's system package repository doesn't contain kernel headers package in a required version (usually the case for Raspberry Pi Raspbian OS) there is a need to use kernel sources as described in the subsequent point.

    • For cross-compilation it's recommended to use Linux kernel sources corresponding to the kernel version installed on the target machine. The kernel sources need to be prepared via proper configuration and modules_prepare as follows (launched from the kernel sources directory on the compiling machine):

      ARCH=... CROSS_COMPILE=... make CONFIG_TARGET modules_prepare

      where CONFIG_TARGET is a specific kernel target configuration (e.g. for Raspberry Pi boards the configuration shall be set to bcmrpi_defconfig, bcm2709_defconfig, bcm2711_defconfig or bcmrpi3_defconfig depending on the platform version). ARCH and CROSS_COMPILE are required to indicate target architecture and cross-compiling tool-chain.

      NOTE 1: When using kernel sources while compiling on the target machine, there is no need to set ARCH and CROSS_COMPILE, since the local tool-set is used for compilation.

      NOTE 2: When compiling for Raspberry Pi, script may be used to find commit on the official RPi kernel repository for target's kernel version.


General compilation command syntax is as follows (launched from the w1-gpio-cl project directory):


The result is w1-gpio-cl.ko driver module located in the project directory. All compilation definitions (KERNEL_SRC, ARCH, ...) are optional, with the following meaning:

  • KERNEL_SRC: specifies kernel sources directory in case they are used instead of the pre-installed kernel headers (see above).

  • ARCH, CROSS_COMPILE: are used for module cross-compilation exactly as for the Linux kernel.

  • CONFIG_W1_MAST_MAX: by default the module is compiled to support up to 5 bus masters. This may be changed by setting this definition.


If the module was compiled on the target machine it's possible to install it into the destination directory by:

sudo make install

and uninstall by:

sudo make uninstall

If the module was cross-compiled, copy w1-gpio-cl.ko module into its destination location on the target machine (/lib/modules/KERNEL_RELEASE/kernel/drivers/w1/masters) and remake the kernel modules dependencies by sudo depmod.


sudo modprobe w1-gpio-cl MODULE_CONFIG

where the MODULE_CONFIG specifies 1-wire bus master(s) configuration as described above.

If you need to load the module automatically update /etc/modules appropriately.




Command line configured kernel mode 1-wire bus master driver. w1-gpio standard Linux module enhancement/substitution.





No releases published


No packages published

Contributors 4