A Tenserflow implementation of SRGAN based on CVPR 2017 paper "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network".
Requirement
python 3.9.13
tensorflow 2.11.0
numpy 1.21.5
opencv-python 4.6.0.66
Put train image(DIV2K DataSet) dataset at ./train folder.
To train dataset, type the code below on your cmd.
python train.py
optional arguments:
--epochs epochs
--batchs batchs
--lr_g learning rate of generator
--lr_d learning rate of discriminator
--train_dir directory of image to train / 학습 할 이미지 위치
--load_model load saved model / 저장된 모델 불러오기 (1: True, 0: False)
--use_cpu forced to use CPU only / CPU 만 이용해 학습하기 (1: True, 0: False)
Put test image in ./test folder.
To test dataset, type the code below on your cmd.
python test.py
The result will be saved in ./result folder.
optional arguments:
--target_folder directory of image to process super resolution / super resolution 처리할 이미지 위치
--save_folder directory to save super resoultion image / super resolution 처리된 이미지 저장 위치