-
Notifications
You must be signed in to change notification settings - Fork 0
/
original.py
323 lines (277 loc) · 10.3 KB
/
original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#coding: UTF-8
#include "windows.h"
import cv2
import numpy as np
import time
from operator import itemgetter
import wiringpi
import sys
import pygame.mixer
#射影変換行列を計算するキャリブレーション用関数
def calibration(areas):
pts1 = np.float32([[135,65],[400,65],[135,330],[400,330]]) #areasと同じ順 (左上,右上,左下,右下)
#areasの格納が普通の配列じゃないので,配列に書き直す.
x0=areas[0][0][0][0]
y0=areas[0][0][0][1]
x1=areas[0][1][0][0]
y1=areas[0][1][0][1]
x2=areas[0][2][0][0]
y2=areas[0][2][0][1]
x3=areas[0][3][0][0]
y3=areas[0][3][0][1]
p0 = [x0,y0]
p1 = [x1,y1]
p2 = [x2,y2]
p3 = [x3,y3]
area = [p0,p1,p2,p3]
#areasの4つの座標を左上,右上,左下,右下の順で並び替える.台形の場合x座標の順で一意に決定
#np.float32リストに対してitemgetterは使えないらしい
area.sort(key=itemgetter(0))
#スケール変換変換
k = (pts1[3][0]-pts1[2][0])/(area[2][0]-area[1][0])
h = (area[1][1]-area[0][1])*k
delta = (area[1][0]-area[0][0])*k
x1 = pts1[2]+[-delta,-h]
x2 = pts1[3]+[delta,-h]
pts2 = np.float32([x1,x2,pts1[2],pts1[3]])
M = cv2.getPerspectiveTransform(pts1,pts2)
return M
#台形補正画像を生成する関数
def revision(M,img):
inv_M =np.linalg.inv(M)
dst = cv2.warpPerspective(img,inv_M,(0,800))
return dst
#ターゲット(黄色)の輪郭を取ってくる関数
def getTarget(image):
# Convert BGR to HSV and smooth
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
smooth=cv2.GaussianBlur(hsv,(15,15),0)
#黄色
lower_blue = np.array([25,100,85])
upper_blue = np.array([100,255,255])
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(smooth, lower_blue, upper_blue)
# Bitwise-AND mask and original image(白黒画像の中で,白の部分だけ筒抜けになって映る)
res = cv2.bitwise_and(frame,frame, mask= mask)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
areas = []
contours.sort(key=cv2.contourArea,reverse=True)
if contours:
cnt = contours[0]
epsilon = 0.08*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)
areas.append(approx)
else:
cnt = []
return areas,res,cnt,
#台形補正用にwebcameraから輪郭をとってくる.
def getBlue(frame):
# Convert BGR to HSV and smooth
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
smooth=cv2.GaussianBlur(hsv,(15,15),0)
# define range of blue color in HSV (第1引数を110〜130→90〜140に変更)
lower_blue = np.array([90,50,50])
upper_blue = np.array([140,255,255])
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(smooth, lower_blue, upper_blue)
# Bitwise-AND mask and original image(白黒画像の中で,白の部分だけ筒抜けになって映る)
res = cv2.bitwise_and(frame,frame, mask= mask)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
areas = []
contours.sort(key=cv2.contourArea,reverse=True)
if contours:
cnt = contours[0]
epsilon = 0.08*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)
areas.append(approx)
else:
cnt = []
return areas,res,cnt,
#輪郭の重心を計算
def center_of_image(image):
areas,_,_ = getTarget(image)
if areas:
try:
M = cv2.moments(areas[0])
x = int(M['m10']/M['m00'])
y = int(M['m01']/M['m00'])
except ZeroDivisionError:
print ("zerodivision")
else:
x=0
y=0
return x,y
#backをforeを中心から(x,y)移動させて重ね合わせる
def clip_image(x, y, back, fore):
h1, w1, _ = back.shape
h2, w2, _ = fore.shape
X = int((w1-w2)/2)
Y = int((h1-h2)/2)
if abs(x)< X and abs(y)<Y:
back[Y+y:Y+h2+y,X+x:X+w2+x] = fore
#+xではみ出す,
elif x >=X and abs(y)<Y:
back[Y+y:Y+h2+y,X+X:X+w2+X,] = fore
#-xではみ出す,
elif -x >=X and abs(y)<Y:
back[Y+y:Y+h2+y,0:w2] = fore
#+yではみ出す,
elif abs(x)<X and y>=Y:
back[Y+Y:Y+h2+Y,X+x:X+w2+x] = fore
#-yではみ出す,
elif abs(x)<X and -y>Y:
back[0:h2,X+x:X+w2+x] = fore
#+x,+yではみ出す,
elif x >=X and y>=Y:
back[Y+Y:Y+h2+Y,X+X:X+X+w2] = fore
#-x,+yではみ出す,
elif -x >=X and y>=Y:
back[Y+Y:Y+h2+Y,0:w2] = fore
#+x,+yではみ出す,
elif x >=X and y>=Y:
back[Y:Y+h2+Y,X+X:X+X+w2] = fore
#+x,-yではみ出す,
elif x >=X and -y>=Y:
back[0:h2,X+X:X+X+w2] = fore
"""
ここまで関数定義
"""
#無地
back1 = cv2.imread("back.png",1)
back2 = cv2.imread("back.png",1)
back3 = cv2.imread("back.png",1)
back4 = cv2.imread("back.png",1)
img_right1 = cv2.imread("right1.png",1)
img_right2 = cv2.imread("right2.png",1)
img_right3 = cv2.imread("right3.png",1)
img_right4 = cv2.imread("right4.png",1)
img_left1 = cv2.imread("left1.png",1)
img_left2 = cv2.imread("left2.png",1)
img_left3 = cv2.imread("left3.png",1)
img_left4 = cv2.imread("left4.png",1)
img_stop1 = cv2.imread("stop1.png",1)
img_stop2 = cv2.imread("stop2.png",1)
img_stop3 = cv2.imread("stop3.png",1)
img_rest1 = cv2.imread("rest1.png",1)
img_rest2 = cv2.imread("rest2.png",1)
calibration_img = cv2.imread("calibration.png",1)
cv2.namedWindow("img", cv2.WND_PROP_FULLSCREEN)
# cv2.namedWindow("img", cv2.WND_PROP_FULLSCREEN)
# cv2.setWindowProperty("img", cv2.WND_PROP_FULLSCREEN, cv2.cv.CV_WINDOW_FULLSCREEN)
button_pin1 = 4 # 7番端子
button_pin2 = 17 # 11番端子
button_pin3 = 27 # 13番端子
button_pin4 = 22 # 15番端子
button_pin5 = 10 # 19番端子
# GPIO初期化
wiringpi.wiringPiSetupGpio()
# GPIOを出力モード(1)に設定
wiringpi.pinMode( button_pin1, 0 )
wiringpi.pinMode( button_pin2, 0 )
wiringpi.pinMode( button_pin3, 0 )
wiringpi.pinMode( button_pin4, 0 )
wiringpi.pinMode( button_pin5, 0 )
# 端子に何も接続されていない場合の状態を設定
# 3.3Vの場合には「2」(プルアップ)
# 0Vの場合は「1」と設定する(プルダウン)
wiringpi.pullUpDnControl( button_pin1, 2 )
wiringpi.pullUpDnControl( button_pin2, 2 )
wiringpi.pullUpDnControl( button_pin3, 2 )
wiringpi.pullUpDnControl( button_pin4, 2 )
wiringpi.pullUpDnControl( button_pin5, 2 )
#↓ラズパイ(opencv2)の方でやらないとなぜか動かない(PCはopencv3)
# cv2.namedWindow("img", cv2.WND_PROP_FULLSCREEN)
# cv2.setWindowProperty("img", cv2.WND_PROP_FULLSCREEN, cv2.cv.CV_WINDOW_FULLSCREEN)
capture = cv2.VideoCapture(0)
count = 0
l = []
m = []
M = []
# isOpenedの代わりにTrueを使うと,frameがemptyのときエラーを吐く
while capture.isOpened():
ret, frame = capture.read()
if ret :
#とりあえず常に黄色の輪郭をとってくるようにする.
areas,res,_= getTarget(frame)
#キャリブレーションボタンが押された場合(右)3秒間,射影変換行列を計算
if wiringpi.digitalRead(button_pin1) == 0 :
#3秒間投影し,Mを計算
while True:
cv2.imshow('img',calibration_img)
cv2.waitKey(1)
time.sleep(0.6)
count =count+1
if count>5:
break
pts1 = np.float32([[135,65],[400,65],[135,330],[400,330]])
pts2 = np.float32([[105,45],[430,45],[135,330],[400,330]])
M = cv2.getPerspectiveTransform(pts1,pts2)
img_right1 = revision(M,img_right1)
img_right2 = revision(M,img_right2)
img_right3 = revision(M,img_right3)
img_right4 = revision(M,img_right4)
img_left1 = revision(M,img_left1)
img_left2 = revision(M,img_left2)
img_left3 = revision(M,img_left3)
img_left4 = revision(M,img_left4)
img_stop1 = revision(M,img_stop1)
img_stop2 = revision(M,img_stop2)
img_stop3 = revision(M,img_stop3)
img_rest1 = revision(M,img_rest1)
img_rest2 = revision(M,img_rest2)
pygame.mixer.init()
pygame.mixer.music.load('calibration_finished.mp3')
pygame.mixer.music.play(1) # ()内は再生回数 -1:ループ再生
print ("calibrating...")
#スイッチ2(右)が押された場合.
elif wiringpi.digitalRead(button_pin2) == 0:
print ("turnright")
#frameから輪郭をとる
cv2.imshow('img',img_right1)
cv2.waitKey(500)
cv2.imshow('img',img_right2)
cv2.waitKey(500)
cv2.imshow('img',img_right3)
cv2.waitKey(500)
cv2.imshow('img',img_right4)
cv2.waitKey(800)
#スイッチ3(左)が押された場合.
elif wiringpi.digitalRead(button_pin3) == 0:
print ("turnright")
#frameから輪郭をとる
cv2.imshow('img',img_left1)
cv2.waitKey(500)
cv2.imshow('img',img_left2)
cv2.waitKey(500)
cv2.imshow('img',img_left3)
cv2.waitKey(500)
cv2.imshow('img',img_left4)
cv2.waitKey(800)
#スイッチ4(stop)が押された場合.
elif wiringpi.digitalRead(button_pin4) == 0:
print ("stop")
#frameから輪郭をとる
cv2.imshow('img',img_stop1)
cv2.waitKey(500)
cv2.imshow('img',img_stop2)
cv2.waitKey(500)
cv2.imshow('img',back3)
cv2.waitKey(500)
#スイッチ5(rest)が押された場合.
elif wiringpi.digitalRead(button_pin5) == 0:
print ("rest")
#frameから輪郭をとる
cv2.imshow('img',img_rest1)
cv2.waitKey(200)
cv2.imshow('img',img_rest2)
cv2.waitKey(2000)
#スイッチOFFのとき.
else :
print ("switch off")
back = cv2.imread("back.png",1)
cv2.imshow('img',back)
#waitKeyの引数を0以下にするとキー入力する毎に画面がframeが更新する.
if cv2.waitKey(1) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()