-
Notifications
You must be signed in to change notification settings - Fork 7k
/
vision_transformer.py
864 lines (760 loc) · 31.4 KB
/
vision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
import math
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, Dict, List, NamedTuple, Optional
import torch
import torch.nn as nn
from ..ops.misc import Conv2dNormActivation, MLP
from ..transforms._presets import ImageClassification, InterpolationMode
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface
__all__ = [
"VisionTransformer",
"ViT_B_16_Weights",
"ViT_B_32_Weights",
"ViT_L_16_Weights",
"ViT_L_32_Weights",
"ViT_H_14_Weights",
"vit_b_16",
"vit_b_32",
"vit_l_16",
"vit_l_32",
"vit_h_14",
]
class ConvStemConfig(NamedTuple):
out_channels: int
kernel_size: int
stride: int
norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d
activation_layer: Callable[..., nn.Module] = nn.ReLU
class MLPBlock(MLP):
"""Transformer MLP block."""
_version = 2
def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout)
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.normal_(m.bias, std=1e-6)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
if version is None or version < 2:
# Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053
for i in range(2):
for type in ["weight", "bias"]:
old_key = f"{prefix}linear_{i+1}.{type}"
new_key = f"{prefix}{3*i}.{type}"
if old_key in state_dict:
state_dict[new_key] = state_dict.pop(old_key)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
class EncoderBlock(nn.Module):
"""Transformer encoder block."""
def __init__(
self,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
):
super().__init__()
self.num_heads = num_heads
# Attention block
self.ln_1 = norm_layer(hidden_dim)
self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
self.dropout = nn.Dropout(dropout)
# MLP block
self.ln_2 = norm_layer(hidden_dim)
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)
def forward(self, input: torch.Tensor):
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
x = self.ln_1(input)
x, _ = self.self_attention(x, x, x, need_weights=False)
x = self.dropout(x)
x = x + input
y = self.ln_2(x)
y = self.mlp(y)
return x + y
class Encoder(nn.Module):
"""Transformer Model Encoder for sequence to sequence translation."""
def __init__(
self,
seq_length: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
):
super().__init__()
# Note that batch_size is on the first dim because
# we have batch_first=True in nn.MultiAttention() by default
self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT
self.dropout = nn.Dropout(dropout)
layers: OrderedDict[str, nn.Module] = OrderedDict()
for i in range(num_layers):
layers[f"encoder_layer_{i}"] = EncoderBlock(
num_heads,
hidden_dim,
mlp_dim,
dropout,
attention_dropout,
norm_layer,
)
self.layers = nn.Sequential(layers)
self.ln = norm_layer(hidden_dim)
def forward(self, input: torch.Tensor):
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
input = input + self.pos_embedding
return self.ln(self.layers(self.dropout(input)))
class VisionTransformer(nn.Module):
"""Vision Transformer as per https://arxiv.org/abs/2010.11929."""
def __init__(
self,
image_size: int,
patch_size: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float = 0.0,
attention_dropout: float = 0.0,
num_classes: int = 1000,
representation_size: Optional[int] = None,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
conv_stem_configs: Optional[List[ConvStemConfig]] = None,
):
super().__init__()
_log_api_usage_once(self)
torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")
self.image_size = image_size
self.patch_size = patch_size
self.hidden_dim = hidden_dim
self.mlp_dim = mlp_dim
self.attention_dropout = attention_dropout
self.dropout = dropout
self.num_classes = num_classes
self.representation_size = representation_size
self.norm_layer = norm_layer
if conv_stem_configs is not None:
# As per https://arxiv.org/abs/2106.14881
seq_proj = nn.Sequential()
prev_channels = 3
for i, conv_stem_layer_config in enumerate(conv_stem_configs):
seq_proj.add_module(
f"conv_bn_relu_{i}",
Conv2dNormActivation(
in_channels=prev_channels,
out_channels=conv_stem_layer_config.out_channels,
kernel_size=conv_stem_layer_config.kernel_size,
stride=conv_stem_layer_config.stride,
norm_layer=conv_stem_layer_config.norm_layer,
activation_layer=conv_stem_layer_config.activation_layer,
),
)
prev_channels = conv_stem_layer_config.out_channels
seq_proj.add_module(
"conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)
)
self.conv_proj: nn.Module = seq_proj
else:
self.conv_proj = nn.Conv2d(
in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size
)
seq_length = (image_size // patch_size) ** 2
# Add a class token
self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
seq_length += 1
self.encoder = Encoder(
seq_length,
num_layers,
num_heads,
hidden_dim,
mlp_dim,
dropout,
attention_dropout,
norm_layer,
)
self.seq_length = seq_length
heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
if representation_size is None:
heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
else:
heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
heads_layers["act"] = nn.Tanh()
heads_layers["head"] = nn.Linear(representation_size, num_classes)
self.heads = nn.Sequential(heads_layers)
if isinstance(self.conv_proj, nn.Conv2d):
# Init the patchify stem
fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]
nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))
if self.conv_proj.bias is not None:
nn.init.zeros_(self.conv_proj.bias)
elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):
# Init the last 1x1 conv of the conv stem
nn.init.normal_(
self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)
)
if self.conv_proj.conv_last.bias is not None:
nn.init.zeros_(self.conv_proj.conv_last.bias)
if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
fan_in = self.heads.pre_logits.in_features
nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
nn.init.zeros_(self.heads.pre_logits.bias)
if isinstance(self.heads.head, nn.Linear):
nn.init.zeros_(self.heads.head.weight)
nn.init.zeros_(self.heads.head.bias)
def _process_input(self, x: torch.Tensor) -> torch.Tensor:
n, c, h, w = x.shape
p = self.patch_size
torch._assert(h == self.image_size, f"Wrong image height! Expected {self.image_size} but got {h}!")
torch._assert(w == self.image_size, f"Wrong image width! Expected {self.image_size} but got {w}!")
n_h = h // p
n_w = w // p
# (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
x = self.conv_proj(x)
# (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
x = x.reshape(n, self.hidden_dim, n_h * n_w)
# (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
# The self attention layer expects inputs in the format (N, S, E)
# where S is the source sequence length, N is the batch size, E is the
# embedding dimension
x = x.permute(0, 2, 1)
return x
def forward(self, x: torch.Tensor):
# Reshape and permute the input tensor
x = self._process_input(x)
n = x.shape[0]
# Expand the class token to the full batch
batch_class_token = self.class_token.expand(n, -1, -1)
x = torch.cat([batch_class_token, x], dim=1)
x = self.encoder(x)
# Classifier "token" as used by standard language architectures
x = x[:, 0]
x = self.heads(x)
return x
def _vision_transformer(
patch_size: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
weights: Optional[WeightsEnum],
progress: bool,
**kwargs: Any,
) -> VisionTransformer:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
assert weights.meta["min_size"][0] == weights.meta["min_size"][1]
_ovewrite_named_param(kwargs, "image_size", weights.meta["min_size"][0])
image_size = kwargs.pop("image_size", 224)
model = VisionTransformer(
image_size=image_size,
patch_size=patch_size,
num_layers=num_layers,
num_heads=num_heads,
hidden_dim=hidden_dim,
mlp_dim=mlp_dim,
**kwargs,
)
if weights:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
_COMMON_META: Dict[str, Any] = {
"categories": _IMAGENET_CATEGORIES,
}
_COMMON_SWAG_META = {
**_COMMON_META,
"recipe": "https://github.com/facebookresearch/SWAG",
"license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE",
}
class ViT_B_16_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/vit_b_16-c867db91.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 86567656,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_16",
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.072,
"acc@5": 95.318,
}
},
"_ops": 17.564,
"_file_size": 330.285,
"_docs": """
These weights were trained from scratch by using a modified version of `DeIT
<https://arxiv.org/abs/2012.12877>`_'s training recipe.
""",
},
)
IMAGENET1K_SWAG_E2E_V1 = Weights(
url="https://download.pytorch.org/models/vit_b_16_swag-9ac1b537.pth",
transforms=partial(
ImageClassification,
crop_size=384,
resize_size=384,
interpolation=InterpolationMode.BICUBIC,
),
meta={
**_COMMON_SWAG_META,
"num_params": 86859496,
"min_size": (384, 384),
"_metrics": {
"ImageNet-1K": {
"acc@1": 85.304,
"acc@5": 97.650,
}
},
"_ops": 55.484,
"_file_size": 331.398,
"_docs": """
These weights are learnt via transfer learning by end-to-end fine-tuning the original
`SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data.
""",
},
)
IMAGENET1K_SWAG_LINEAR_V1 = Weights(
url="https://download.pytorch.org/models/vit_b_16_lc_swag-4e70ced5.pth",
transforms=partial(
ImageClassification,
crop_size=224,
resize_size=224,
interpolation=InterpolationMode.BICUBIC,
),
meta={
**_COMMON_SWAG_META,
"recipe": "https://github.com/pytorch/vision/pull/5793",
"num_params": 86567656,
"min_size": (224, 224),
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.886,
"acc@5": 96.180,
}
},
"_ops": 17.564,
"_file_size": 330.285,
"_docs": """
These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk
weights and a linear classifier learnt on top of them trained on ImageNet-1K data.
""",
},
)
DEFAULT = IMAGENET1K_V1
class ViT_B_32_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 88224232,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_32",
"_metrics": {
"ImageNet-1K": {
"acc@1": 75.912,
"acc@5": 92.466,
}
},
"_ops": 4.409,
"_file_size": 336.604,
"_docs": """
These weights were trained from scratch by using a modified version of `DeIT
<https://arxiv.org/abs/2012.12877>`_'s training recipe.
""",
},
)
DEFAULT = IMAGENET1K_V1
class ViT_L_16_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=242),
meta={
**_COMMON_META,
"num_params": 304326632,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_16",
"_metrics": {
"ImageNet-1K": {
"acc@1": 79.662,
"acc@5": 94.638,
}
},
"_ops": 61.555,
"_file_size": 1161.023,
"_docs": """
These weights were trained from scratch by using a modified version of TorchVision's
`new training recipe
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
""",
},
)
IMAGENET1K_SWAG_E2E_V1 = Weights(
url="https://download.pytorch.org/models/vit_l_16_swag-4f3808c9.pth",
transforms=partial(
ImageClassification,
crop_size=512,
resize_size=512,
interpolation=InterpolationMode.BICUBIC,
),
meta={
**_COMMON_SWAG_META,
"num_params": 305174504,
"min_size": (512, 512),
"_metrics": {
"ImageNet-1K": {
"acc@1": 88.064,
"acc@5": 98.512,
}
},
"_ops": 361.986,
"_file_size": 1164.258,
"_docs": """
These weights are learnt via transfer learning by end-to-end fine-tuning the original
`SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data.
""",
},
)
IMAGENET1K_SWAG_LINEAR_V1 = Weights(
url="https://download.pytorch.org/models/vit_l_16_lc_swag-4d563306.pth",
transforms=partial(
ImageClassification,
crop_size=224,
resize_size=224,
interpolation=InterpolationMode.BICUBIC,
),
meta={
**_COMMON_SWAG_META,
"recipe": "https://github.com/pytorch/vision/pull/5793",
"num_params": 304326632,
"min_size": (224, 224),
"_metrics": {
"ImageNet-1K": {
"acc@1": 85.146,
"acc@5": 97.422,
}
},
"_ops": 61.555,
"_file_size": 1161.023,
"_docs": """
These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk
weights and a linear classifier learnt on top of them trained on ImageNet-1K data.
""",
},
)
DEFAULT = IMAGENET1K_V1
class ViT_L_32_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/vit_l_32-c7638314.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 306535400,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_32",
"_metrics": {
"ImageNet-1K": {
"acc@1": 76.972,
"acc@5": 93.07,
}
},
"_ops": 15.378,
"_file_size": 1169.449,
"_docs": """
These weights were trained from scratch by using a modified version of `DeIT
<https://arxiv.org/abs/2012.12877>`_'s training recipe.
""",
},
)
DEFAULT = IMAGENET1K_V1
class ViT_H_14_Weights(WeightsEnum):
IMAGENET1K_SWAG_E2E_V1 = Weights(
url="https://download.pytorch.org/models/vit_h_14_swag-80465313.pth",
transforms=partial(
ImageClassification,
crop_size=518,
resize_size=518,
interpolation=InterpolationMode.BICUBIC,
),
meta={
**_COMMON_SWAG_META,
"num_params": 633470440,
"min_size": (518, 518),
"_metrics": {
"ImageNet-1K": {
"acc@1": 88.552,
"acc@5": 98.694,
}
},
"_ops": 1016.717,
"_file_size": 2416.643,
"_docs": """
These weights are learnt via transfer learning by end-to-end fine-tuning the original
`SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data.
""",
},
)
IMAGENET1K_SWAG_LINEAR_V1 = Weights(
url="https://download.pytorch.org/models/vit_h_14_lc_swag-c1eb923e.pth",
transforms=partial(
ImageClassification,
crop_size=224,
resize_size=224,
interpolation=InterpolationMode.BICUBIC,
),
meta={
**_COMMON_SWAG_META,
"recipe": "https://github.com/pytorch/vision/pull/5793",
"num_params": 632045800,
"min_size": (224, 224),
"_metrics": {
"ImageNet-1K": {
"acc@1": 85.708,
"acc@5": 97.730,
}
},
"_ops": 167.295,
"_file_size": 2411.209,
"_docs": """
These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk
weights and a linear classifier learnt on top of them trained on ImageNet-1K data.
""",
},
)
DEFAULT = IMAGENET1K_SWAG_E2E_V1
@register_model()
@handle_legacy_interface(weights=("pretrained", ViT_B_16_Weights.IMAGENET1K_V1))
def vit_b_16(*, weights: Optional[ViT_B_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_b_16 architecture from
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
Args:
weights (:class:`~torchvision.models.ViT_B_16_Weights`, optional): The pretrained
weights to use. See :class:`~torchvision.models.ViT_B_16_Weights`
below for more details and possible values. By default, no pre-trained weights are used.
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ViT_B_16_Weights
:members:
"""
weights = ViT_B_16_Weights.verify(weights)
return _vision_transformer(
patch_size=16,
num_layers=12,
num_heads=12,
hidden_dim=768,
mlp_dim=3072,
weights=weights,
progress=progress,
**kwargs,
)
@register_model()
@handle_legacy_interface(weights=("pretrained", ViT_B_32_Weights.IMAGENET1K_V1))
def vit_b_32(*, weights: Optional[ViT_B_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_b_32 architecture from
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
Args:
weights (:class:`~torchvision.models.ViT_B_32_Weights`, optional): The pretrained
weights to use. See :class:`~torchvision.models.ViT_B_32_Weights`
below for more details and possible values. By default, no pre-trained weights are used.
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ViT_B_32_Weights
:members:
"""
weights = ViT_B_32_Weights.verify(weights)
return _vision_transformer(
patch_size=32,
num_layers=12,
num_heads=12,
hidden_dim=768,
mlp_dim=3072,
weights=weights,
progress=progress,
**kwargs,
)
@register_model()
@handle_legacy_interface(weights=("pretrained", ViT_L_16_Weights.IMAGENET1K_V1))
def vit_l_16(*, weights: Optional[ViT_L_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_l_16 architecture from
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
Args:
weights (:class:`~torchvision.models.ViT_L_16_Weights`, optional): The pretrained
weights to use. See :class:`~torchvision.models.ViT_L_16_Weights`
below for more details and possible values. By default, no pre-trained weights are used.
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ViT_L_16_Weights
:members:
"""
weights = ViT_L_16_Weights.verify(weights)
return _vision_transformer(
patch_size=16,
num_layers=24,
num_heads=16,
hidden_dim=1024,
mlp_dim=4096,
weights=weights,
progress=progress,
**kwargs,
)
@register_model()
@handle_legacy_interface(weights=("pretrained", ViT_L_32_Weights.IMAGENET1K_V1))
def vit_l_32(*, weights: Optional[ViT_L_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_l_32 architecture from
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
Args:
weights (:class:`~torchvision.models.ViT_L_32_Weights`, optional): The pretrained
weights to use. See :class:`~torchvision.models.ViT_L_32_Weights`
below for more details and possible values. By default, no pre-trained weights are used.
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ViT_L_32_Weights
:members:
"""
weights = ViT_L_32_Weights.verify(weights)
return _vision_transformer(
patch_size=32,
num_layers=24,
num_heads=16,
hidden_dim=1024,
mlp_dim=4096,
weights=weights,
progress=progress,
**kwargs,
)
@register_model()
@handle_legacy_interface(weights=("pretrained", None))
def vit_h_14(*, weights: Optional[ViT_H_14_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_h_14 architecture from
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
Args:
weights (:class:`~torchvision.models.ViT_H_14_Weights`, optional): The pretrained
weights to use. See :class:`~torchvision.models.ViT_H_14_Weights`
below for more details and possible values. By default, no pre-trained weights are used.
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ViT_H_14_Weights
:members:
"""
weights = ViT_H_14_Weights.verify(weights)
return _vision_transformer(
patch_size=14,
num_layers=32,
num_heads=16,
hidden_dim=1280,
mlp_dim=5120,
weights=weights,
progress=progress,
**kwargs,
)
def interpolate_embeddings(
image_size: int,
patch_size: int,
model_state: "OrderedDict[str, torch.Tensor]",
interpolation_mode: str = "bicubic",
reset_heads: bool = False,
) -> "OrderedDict[str, torch.Tensor]":
"""This function helps interpolate positional embeddings during checkpoint loading,
especially when you want to apply a pre-trained model on images with different resolution.
Args:
image_size (int): Image size of the new model.
patch_size (int): Patch size of the new model.
model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model.
interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
reset_heads (bool): If true, not copying the state of heads. Default: False.
Returns:
OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model.
"""
# Shape of pos_embedding is (1, seq_length, hidden_dim)
pos_embedding = model_state["encoder.pos_embedding"]
n, seq_length, hidden_dim = pos_embedding.shape
if n != 1:
raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")
new_seq_length = (image_size // patch_size) ** 2 + 1
# Need to interpolate the weights for the position embedding.
# We do this by reshaping the positions embeddings to a 2d grid, performing
# an interpolation in the (h, w) space and then reshaping back to a 1d grid.
if new_seq_length != seq_length:
# The class token embedding shouldn't be interpolated, so we split it up.
seq_length -= 1
new_seq_length -= 1
pos_embedding_token = pos_embedding[:, :1, :]
pos_embedding_img = pos_embedding[:, 1:, :]
# (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
seq_length_1d = int(math.sqrt(seq_length))
if seq_length_1d * seq_length_1d != seq_length:
raise ValueError(
f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}"
)
# (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
new_seq_length_1d = image_size // patch_size
# Perform interpolation.
# (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
new_pos_embedding_img = nn.functional.interpolate(
pos_embedding_img,
size=new_seq_length_1d,
mode=interpolation_mode,
align_corners=True,
)
# (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)
# (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)
model_state["encoder.pos_embedding"] = new_pos_embedding
if reset_heads:
model_state_copy: "OrderedDict[str, torch.Tensor]" = OrderedDict()
for k, v in model_state.items():
if not k.startswith("heads"):
model_state_copy[k] = v
model_state = model_state_copy
return model_state