-
Notifications
You must be signed in to change notification settings - Fork 0
/
field_ops.go
254 lines (213 loc) · 7.98 KB
/
field_ops.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
package p751
import . "v2ray.com/core/external/github.com/cloudflare/sidh/internal/isogeny"
// 2*p751
var ()
//------------------------------------------------------------------------------
// Implementtaion of FieldOperations
//------------------------------------------------------------------------------
// Implements FieldOps
type fp751Ops struct{}
func FieldOperations() FieldOps {
return &fp751Ops{}
}
func (fp751Ops) Add(dest, lhs, rhs *Fp2Element) {
fp751AddReduced(&dest.A, &lhs.A, &rhs.A)
fp751AddReduced(&dest.B, &lhs.B, &rhs.B)
}
func (fp751Ops) Sub(dest, lhs, rhs *Fp2Element) {
fp751SubReduced(&dest.A, &lhs.A, &rhs.A)
fp751SubReduced(&dest.B, &lhs.B, &rhs.B)
}
func (fp751Ops) Mul(dest, lhs, rhs *Fp2Element) {
// Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b).
a := &lhs.A
b := &lhs.B
c := &rhs.A
d := &rhs.B
// We want to compute
//
// (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i
//
// Use Karatsuba's trick: note that
//
// (b - a)*(c - d) = (b*c + a*d) - a*c - b*d
//
// so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d.
var ac, bd FpElementX2
fp751Mul(&ac, a, c) // = a*c*R*R
fp751Mul(&bd, b, d) // = b*d*R*R
var b_minus_a, c_minus_d FpElement
fp751SubReduced(&b_minus_a, b, a) // = (b-a)*R
fp751SubReduced(&c_minus_d, c, d) // = (c-d)*R
var ad_plus_bc FpElementX2
fp751Mul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R
fp751X2AddLazy(&ad_plus_bc, &ad_plus_bc, &ac) // = ((b-a)*(c-d) + a*c)*R*R
fp751X2AddLazy(&ad_plus_bc, &ad_plus_bc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R
fp751MontgomeryReduce(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p
var ac_minus_bd FpElementX2
fp751X2SubLazy(&ac_minus_bd, &ac, &bd) // = (a*c - b*d)*R*R
fp751MontgomeryReduce(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p
}
func (fp751Ops) Square(dest, x *Fp2Element) {
a := &x.A
b := &x.B
// We want to compute
//
// (a + bi)*(a + bi) = (a^2 - b^2) + 2abi.
var a2, a_plus_b, a_minus_b FpElement
fp751AddReduced(&a2, a, a) // = a*R + a*R = 2*a*R
fp751AddReduced(&a_plus_b, a, b) // = a*R + b*R = (a+b)*R
fp751SubReduced(&a_minus_b, a, b) // = a*R - b*R = (a-b)*R
var asq_minus_bsq, ab2 FpElementX2
fp751Mul(&asq_minus_bsq, &a_plus_b, &a_minus_b) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R
fp751Mul(&ab2, &a2, b) // = 2*a*b*R*R
fp751MontgomeryReduce(&dest.A, &asq_minus_bsq) // = (a^2 - b^2)*R mod p
fp751MontgomeryReduce(&dest.B, &ab2) // = 2*a*b*R mod p
}
// Set dest = 1/x
//
// Allowed to overlap dest with x.
//
// Returns dest to allow chaining operations.
func (fp751Ops) Inv(dest, x *Fp2Element) {
a := &x.A
b := &x.B
// We want to compute
//
// 1 1 (a - bi) (a - bi)
// -------- = -------- -------- = -----------
// (a + bi) (a + bi) (a - bi) (a^2 + b^2)
//
// Letting c = 1/(a^2 + b^2), this is
//
// 1/(a+bi) = a*c - b*ci.
var asq_plus_bsq primeFieldElement
var asq, bsq FpElementX2
fp751Mul(&asq, a, a) // = a*a*R*R
fp751Mul(&bsq, b, b) // = b*b*R*R
fp751X2AddLazy(&asq, &asq, &bsq) // = (a^2 + b^2)*R*R
fp751MontgomeryReduce(&asq_plus_bsq.A, &asq) // = (a^2 + b^2)*R mod p
// Now asq_plus_bsq = a^2 + b^2
// Invert asq_plus_bsq
inv := asq_plus_bsq
inv.Mul(&asq_plus_bsq, &asq_plus_bsq)
inv.P34(&inv)
inv.Mul(&inv, &inv)
inv.Mul(&inv, &asq_plus_bsq)
var ac FpElementX2
fp751Mul(&ac, a, &inv.A)
fp751MontgomeryReduce(&dest.A, &ac)
var minus_b FpElement
fp751SubReduced(&minus_b, &minus_b, b)
var minus_bc FpElementX2
fp751Mul(&minus_bc, &minus_b, &inv.A)
fp751MontgomeryReduce(&dest.B, &minus_bc)
}
// In case choice == 1, performs following swap in constant time:
// xPx <-> xQx
// xPz <-> xQz
// Otherwise returns xPx, xPz, xQx, xQz unchanged
func (fp751Ops) CondSwap(xPx, xPz, xQx, xQz *Fp2Element, choice uint8) {
fp751ConditionalSwap(&xPx.A, &xQx.A, choice)
fp751ConditionalSwap(&xPx.B, &xQx.B, choice)
fp751ConditionalSwap(&xPz.A, &xQz.A, choice)
fp751ConditionalSwap(&xPz.B, &xQz.B, choice)
}
// Converts values in x.A and x.B to Montgomery domain
// x.A = x.A * R mod p
// x.B = x.B * R mod p
func (fp751Ops) ToMontgomery(x *Fp2Element) {
var aRR FpElementX2
// convert to montgomery domain
fp751Mul(&aRR, &x.A, &p751R2) // = a*R*R
fp751MontgomeryReduce(&x.A, &aRR) // = a*R mod p
fp751Mul(&aRR, &x.B, &p751R2)
fp751MontgomeryReduce(&x.B, &aRR)
}
// Converts values in x.A and x.B from Montgomery domain
// a = x.A mod p
// b = x.B mod p
//
// After returning from the call x is not modified.
func (fp751Ops) FromMontgomery(x *Fp2Element, out *Fp2Element) {
var aR FpElementX2
// convert from montgomery domain
copy(aR[:], x.A[:])
fp751MontgomeryReduce(&out.A, &aR) // = a mod p in [0, 2p)
fp751StrongReduce(&out.A) // = a mod p in [0, p)
for i := range aR {
aR[i] = 0
}
copy(aR[:], x.B[:])
fp751MontgomeryReduce(&out.B, &aR)
fp751StrongReduce(&out.B)
}
//------------------------------------------------------------------------------
// Prime Field
//------------------------------------------------------------------------------
// Represents an element of the prime field F_p in Montgomery domain
type primeFieldElement struct {
// The value `A`is represented by `aR mod p`.
A FpElement
}
// Set dest = lhs * rhs.
//
// Allowed to overlap lhs or rhs with dest.
//
// Returns dest to allow chaining operations.
func (dest *primeFieldElement) Mul(lhs, rhs *primeFieldElement) *primeFieldElement {
a := &lhs.A // = a*R
b := &rhs.A // = b*R
var ab FpElementX2
fp751Mul(&ab, a, b) // = a*b*R*R
fp751MontgomeryReduce(&dest.A, &ab) // = a*b*R mod p
return dest
}
// Set dest = x^(2^k), for k >= 1, by repeated squarings.
//
// Allowed to overlap x with dest.
//
// Returns dest to allow chaining operations.
func (dest *primeFieldElement) Pow2k(x *primeFieldElement, k uint8) *primeFieldElement {
dest.Mul(x, x)
for i := uint8(1); i < k; i++ {
dest.Mul(dest, dest)
}
return dest
}
// Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x).
//
// Allowed to overlap x with dest.
//
// Returns dest to allow chaining operations.
func (dest *primeFieldElement) P34(x *primeFieldElement) *primeFieldElement {
// Sliding-window strategy computed with Sage, awk, sed, and tr.
//
// This performs sum(powStrategy) = 744 squarings and len(mulStrategy)
// = 137 multiplications, in addition to 1 squaring and 15
// multiplications to build a lookup table.
//
// In total this is 745 squarings, 152 multiplications. Since squaring
// is not implemented for the prime field, this is 897 multiplications
// in total.
powStrategy := [137]uint8{5, 7, 6, 2, 10, 4, 6, 9, 8, 5, 9, 4, 7, 5, 5, 4, 8, 3, 9, 5, 5, 4, 10, 4, 6, 6, 6, 5, 8, 9, 3, 4, 9, 4, 5, 6, 6, 2, 9, 4, 5, 5, 5, 7, 7, 9, 4, 6, 4, 8, 5, 8, 6, 6, 2, 9, 7, 4, 8, 8, 8, 4, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2}
mulStrategy := [137]uint8{31, 23, 21, 1, 31, 7, 7, 7, 9, 9, 19, 15, 23, 23, 11, 7, 25, 5, 21, 17, 11, 5, 17, 7, 11, 9, 23, 9, 1, 19, 5, 3, 25, 15, 11, 29, 31, 1, 29, 11, 13, 9, 11, 27, 13, 19, 15, 31, 3, 29, 23, 31, 25, 11, 1, 21, 19, 15, 15, 21, 29, 13, 23, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 3}
initialMul := uint8(27)
// Build a lookup table of odd multiples of x.
lookup := [16]primeFieldElement{}
xx := &primeFieldElement{}
xx.Mul(x, x) // Set xx = x^2
lookup[0] = *x
for i := 1; i < 16; i++ {
lookup[i].Mul(&lookup[i-1], xx)
}
// Now lookup = {x, x^3, x^5, ... }
// so that lookup[i] = x^{2*i + 1}
// so that lookup[k/2] = x^k, for odd k
*dest = lookup[initialMul/2]
for i := uint8(0); i < 137; i++ {
dest.Pow2k(dest, powStrategy[i])
dest.Mul(dest, &lookup[mulStrategy[i]/2])
}
return dest
}