-
Notifications
You must be signed in to change notification settings - Fork 5.8k
/
evaluate.py
executable file
·446 lines (393 loc) · 15.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#!/usr/bin/env python
import collections
import copy
import gymnasium as gym
import json
import os
from pathlib import Path
import shelve
import typer
import ray
import ray.cloudpickle as cloudpickle
from ray.rllib.env import MultiAgentEnv
from ray.rllib.env.base_env import _DUMMY_AGENT_ID
from ray.rllib.env.env_context import EnvContext
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.spaces.space_utils import flatten_to_single_ndarray
from ray.rllib.common import CLIArguments as cli
from ray.tune.utils import merge_dicts
from ray.tune.registry import get_trainable_cls, _global_registry, ENV_CREATOR
# create the "evaluate" Typer app
eval_app = typer.Typer()
class RolloutSaver:
"""Utility class for storing rollouts.
Currently supports two behaviours: the original, which
simply dumps everything to a pickle file once complete,
and a mode which stores each rollout as an entry in a Python
shelf db file. The latter mode is more robust to memory problems
or crashes part-way through the rollout generation. Each rollout
is stored with a key based on the episode number (0-indexed),
and the number of episodes is stored with the key "num_episodes",
so to load the shelf file, use something like:
with shelve.open('rollouts.pkl') as rollouts:
for episode_index in range(rollouts["num_episodes"]):
rollout = rollouts[str(episode_index)]
If outfile is None, this class does nothing.
"""
def __init__(
self,
outfile=None,
use_shelve=False,
write_update_file=False,
target_steps=None,
target_episodes=None,
save_info=False,
):
self._outfile = outfile
self._update_file = None
self._use_shelve = use_shelve
self._write_update_file = write_update_file
self._shelf = None
self._num_episodes = 0
self._rollouts = []
self._current_rollout = []
self._total_steps = 0
self._target_episodes = target_episodes
self._target_steps = target_steps
self._save_info = save_info
def _get_tmp_progress_filename(self):
outpath = Path(self._outfile)
return outpath.parent / ("__progress_" + outpath.name)
@property
def outfile(self):
return self._outfile
def __enter__(self):
if self._outfile:
if self._use_shelve:
# Open a shelf file to store each rollout as they come in
self._shelf = shelve.open(self._outfile)
else:
# Original behaviour - keep all rollouts in memory and save
# them all at the end.
# But check we can actually write to the outfile before going
# through the effort of generating the rollouts:
try:
with open(self._outfile, "wb") as _:
pass
except IOError as x:
print(
"Can not open {} for writing - cancelling rollouts.".format(
self._outfile
)
)
raise x
if self._write_update_file:
# Open a file to track rollout progress:
self._update_file = self._get_tmp_progress_filename().open(mode="w")
return self
def __exit__(self, type, value, traceback):
if self._shelf:
# Close the shelf file, and store the number of episodes for ease
self._shelf["num_episodes"] = self._num_episodes
self._shelf.close()
elif self._outfile and not self._use_shelve:
# Dump everything as one big pickle:
cloudpickle.dump(self._rollouts, open(self._outfile, "wb"))
if self._update_file:
# Remove the temp progress file:
self._get_tmp_progress_filename().unlink()
self._update_file = None
def _get_progress(self):
if self._target_episodes:
return "{} / {} episodes completed".format(
self._num_episodes, self._target_episodes
)
elif self._target_steps:
return "{} / {} steps completed".format(
self._total_steps, self._target_steps
)
else:
return "{} episodes completed".format(self._num_episodes)
def begin_rollout(self):
self._current_rollout = []
def end_rollout(self):
if self._outfile:
if self._use_shelve:
# Save this episode as a new entry in the shelf database,
# using the episode number as the key.
self._shelf[str(self._num_episodes)] = self._current_rollout
else:
# Append this rollout to our list, to save laer.
self._rollouts.append(self._current_rollout)
self._num_episodes += 1
if self._update_file:
self._update_file.seek(0)
self._update_file.write(self._get_progress() + "\n")
self._update_file.flush()
def append_step(self, obs, action, next_obs, reward, terminated, truncated, info):
"""Add a step to the current rollout, if we are saving them"""
if self._outfile:
if self._save_info:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated, info]
)
else:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated]
)
self._total_steps += 1
@eval_app.command()
def run(
checkpoint: str = cli.Checkpoint,
algo: str = cli.Algo,
env: str = cli.Env,
local_mode: bool = cli.LocalMode,
render: bool = cli.Render,
steps: int = cli.Steps,
episodes: int = cli.Episodes,
out: str = cli.Out,
config: str = cli.Config,
save_info: bool = cli.SaveInfo,
use_shelve: bool = cli.UseShelve,
track_progress: bool = cli.TrackProgress,
):
if use_shelve and not out:
raise ValueError(
"If you set --use-shelve, you must provide an output file via "
"--out as well!"
)
if track_progress and not out:
raise ValueError(
"If you set --track-progress, you must provide an output file via "
"--out as well!"
)
# Load configuration from checkpoint file.
config_args = json.loads(config)
config_path = ""
if checkpoint:
config_dir = os.path.dirname(checkpoint)
config_path = os.path.join(config_dir, "params.pkl")
# Try parent directory.
if not os.path.exists(config_path):
config_path = os.path.join(config_dir, "../params.pkl")
# Load the config from pickled.
if os.path.exists(config_path):
with open(config_path, "rb") as f:
config = cloudpickle.load(f)
# If no pkl file found, require command line `--config`.
else:
# If no config in given checkpoint -> Error.
if checkpoint:
raise ValueError(
"Could not find params.pkl in either the checkpoint dir or "
"its parent directory AND no `--config` given on command "
"line!"
)
# Use default config for given agent.
if not algo:
raise ValueError("Please provide an algorithm via `--algo`.")
algo_cls = get_trainable_cls(algo)
config = algo_cls.get_default_config()
# Make sure worker 0 has an Env.
config["create_env_on_driver"] = True
# Merge with `evaluation_config` (first try from command line, then from
# pkl file).
evaluation_config = copy.deepcopy(
config_args.get("evaluation_config", config.get("evaluation_config", {}))
)
config = merge_dicts(config, evaluation_config)
# Merge with command line `--config` settings (if not already the same anyways).
config = merge_dicts(config, config_args)
if not env:
if not config.get("env"):
raise ValueError(
"You either need to provide an --env argument or pass"
"an `env` key with a valid environment to your `config`"
"argument."
)
env = config.get("env")
# Make sure we have evaluation workers.
if not config.get("evaluation_num_workers"):
config["evaluation_num_workers"] = config.get("num_workers", 0)
if not config.get("evaluation_duration"):
config["evaluation_duration"] = 1
# Hard-override this as it raises a warning by Algorithm otherwise.
# Makes no sense anyways, to have it set to None as we don't call
# `Algorithm.train()` here.
config["evaluation_interval"] = 1
# Rendering settings.
config["render_env"] = render
ray.init(local_mode=local_mode)
# Create the Algorithm from config.
cls = get_trainable_cls(algo)
algorithm = cls(env=env, config=config)
# Load state from checkpoint, if provided.
if checkpoint:
algorithm.restore(checkpoint)
# Do the actual rollout.
with RolloutSaver(
outfile=out,
use_shelve=use_shelve,
write_update_file=track_progress,
target_steps=steps,
target_episodes=episodes,
save_info=save_info,
) as saver:
rollout(algorithm, env, steps, episodes, saver, not render)
algorithm.stop()
class DefaultMapping(collections.defaultdict):
"""default_factory now takes as an argument the missing key."""
def __missing__(self, key):
self[key] = value = self.default_factory(key)
return value
def default_policy_agent_mapping(unused_agent_id) -> str:
return DEFAULT_POLICY_ID
def keep_going(steps: int, num_steps: int, episodes: int, num_episodes: int) -> bool:
"""Determine whether we've run enough steps or episodes."""
episode_limit_reached = num_episodes and episodes >= num_episodes
step_limit_reached = num_steps and steps >= num_steps
return False if episode_limit_reached or step_limit_reached else True
def rollout(
agent,
env_name, # keep me, used in tests
num_steps,
num_episodes=0,
saver=None,
no_render=True,
):
policy_agent_mapping = default_policy_agent_mapping
if saver is None:
saver = RolloutSaver()
# Normal case: Agent was setup correctly with an evaluation WorkerSet,
# which we will now use to rollout.
if hasattr(agent, "evaluation_workers") and isinstance(
agent.evaluation_workers, WorkerSet
):
steps = 0
episodes = 0
while keep_going(steps, num_steps, episodes, num_episodes):
saver.begin_rollout()
eval_result = agent.evaluate()["evaluation"]
# Increase time-step and episode counters.
eps = agent.config["evaluation_duration"]
episodes += eps
steps += eps * eval_result["episode_len_mean"]
# Print out results and continue.
print(
"Episode #{}: reward: {}".format(
episodes, eval_result["episode_reward_mean"]
)
)
saver.end_rollout()
return
# Agent has no evaluation workers, but RolloutWorkers.
elif hasattr(agent, "workers") and isinstance(agent.workers, WorkerSet):
env = agent.workers.local_worker().env
multiagent = isinstance(env, MultiAgentEnv)
if agent.workers.local_worker().multiagent:
policy_agent_mapping = agent.config.policy_mapping_fn
policy_map = agent.workers.local_worker().policy_map
state_init = {p: m.get_initial_state() for p, m in policy_map.items()}
use_lstm = {p: len(s) > 0 for p, s in state_init.items()}
# Agent has neither evaluation- nor rollout workers.
else:
from gymnasium import envs
if envs.registry.env_specs.get(agent.config["env"]):
# if environment is gym environment, load from gym
env = gym.make(agent.config["env"])
else:
# if environment registered ray environment, load from ray
env_creator = _global_registry.get(ENV_CREATOR, agent.config["env"])
env_context = EnvContext(agent.config["env_config"] or {}, worker_index=0)
env = env_creator(env_context)
multiagent = False
try:
policy_map = {DEFAULT_POLICY_ID: agent.policy}
except AttributeError:
raise AttributeError(
"Agent ({}) does not have a `policy` property! This is needed "
"for performing (trained) agent rollouts.".format(agent)
)
use_lstm = {DEFAULT_POLICY_ID: False}
action_init = {
p: flatten_to_single_ndarray(m.action_space.sample())
for p, m in policy_map.items()
}
steps = 0
episodes = 0
while keep_going(steps, num_steps, episodes, num_episodes):
mapping_cache = {} # in case policy_agent_mapping is stochastic
saver.begin_rollout()
obs, info = env.reset()
agent_states = DefaultMapping(
lambda agent_id: state_init[mapping_cache[agent_id]]
)
prev_actions = DefaultMapping(
lambda agent_id: action_init[mapping_cache[agent_id]]
)
prev_rewards = collections.defaultdict(lambda: 0.0)
terminated = truncated = False
reward_total = 0.0
while (
not terminated
and not truncated
and keep_going(steps, num_steps, episodes, num_episodes)
):
multi_obs = obs if multiagent else {_DUMMY_AGENT_ID: obs}
action_dict = {}
for agent_id, a_obs in multi_obs.items():
if a_obs is not None:
policy_id = mapping_cache.setdefault(
agent_id, policy_agent_mapping(agent_id)
)
p_use_lstm = use_lstm[policy_id]
if p_use_lstm:
a_action, p_state, _ = agent.compute_single_action(
a_obs,
state=agent_states[agent_id],
prev_action=prev_actions[agent_id],
prev_reward=prev_rewards[agent_id],
policy_id=policy_id,
)
agent_states[agent_id] = p_state
else:
a_action = agent.compute_single_action(
a_obs,
prev_action=prev_actions[agent_id],
prev_reward=prev_rewards[agent_id],
policy_id=policy_id,
)
a_action = flatten_to_single_ndarray(a_action)
action_dict[agent_id] = a_action
prev_actions[agent_id] = a_action
action = action_dict
action = action if multiagent else action[_DUMMY_AGENT_ID]
next_obs, reward, terminated, truncated, info = env.step(action)
if multiagent:
for agent_id, r in reward.items():
prev_rewards[agent_id] = r
else:
prev_rewards[_DUMMY_AGENT_ID] = reward
if multiagent:
terminated = terminated["__all__"]
truncated = truncated["__all__"]
reward_total += sum(r for r in reward.values() if r is not None)
else:
reward_total += reward
if not no_render:
env.render()
saver.append_step(
obs, action, next_obs, reward, terminated, truncated, info
)
steps += 1
obs = next_obs
saver.end_rollout()
print("Episode #{}: reward: {}".format(episodes, reward_total))
if terminated or truncated:
episodes += 1
def main():
"""Run the CLI."""
eval_app()
if __name__ == "__main__":
main()