This tutorial walks through the process of converting an existing Hugging Face Transformers script to use Ray Train.
Learn how to:
- Configure a :ref:`training function <train-overview-training-function>` to report metrics and save checkpoints.
- Configure :ref:`scaling <train-overview-scaling-config>` and CPU or GPU resource requirements for your training job.
- Launch your distributed training job with a :class:`~ray.train.torch.TorchTrainer`.
For reference, the final code follows:
from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig
def train_func(config):
# Your Transformers training code here.
scaling_config = ScalingConfig(num_workers=2, use_gpu=True)
trainer = TorchTrainer(train_func, scaling_config=scaling_config)
result = trainer.fit()
- train_func is the Python code that executes on each distributed training worker.
- :class:`~ray.train.ScalingConfig` defines the number of distributed training workers and whether to use GPUs.
- :class:`~ray.train.torch.TorchTrainer` launches the distributed training job.
Compare a Hugging Face Transformers training script with and without Ray Train.
.. tabs:: .. group-tab:: Hugging Face Transformers .. code-block:: python # Adapted from Hugging Face tutorial: https://huggingface.co/docs/transformers/training import numpy as np import evaluate from datasets import load_dataset from transformers import ( Trainer, TrainingArguments, AutoTokenizer, AutoModelForSequenceClassification, ) # Datasets dataset = load_dataset("yelp_review_full") tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) small_train_dataset = dataset["train"].select(range(1000)).map(tokenize_function, batched=True) small_eval_dataset = dataset["test"].select(range(1000)).map(tokenize_function, batched=True) # Model model = AutoModelForSequenceClassification.from_pretrained( "bert-base-cased", num_labels=5 ) # Metrics metric = evaluate.load("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) # Hugging Face Trainer training_args = TrainingArguments( output_dir="test_trainer", evaluation_strategy="epoch", report_to="none" ) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics=compute_metrics, ) # Start Training trainer.train() .. group-tab:: Hugging Face Transformers + Ray Train .. code-block:: python :emphasize-lines: 11-13, 15-18, 55-72 import numpy as np import evaluate from datasets import load_dataset from transformers import ( Trainer, TrainingArguments, AutoTokenizer, AutoModelForSequenceClassification, ) import ray.train.huggingface.transformers from ray.train import ScalingConfig from ray.train.torch import TorchTrainer # [1] Encapsulate data preprocessing, training, and evaluation # logic in a training function # ============================================================ def train_func(config): # Datasets dataset = load_dataset("yelp_review_full") tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) small_train_dataset = dataset["train"].select(range(1000)).map(tokenize_function, batched=True) small_eval_dataset = dataset["test"].select(range(1000)).map(tokenize_function, batched=True) # Model model = AutoModelForSequenceClassification.from_pretrained( "bert-base-cased", num_labels=5 ) # Evaluation Metrics metric = evaluate.load("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) # Hugging Face Trainer training_args = TrainingArguments( output_dir="test_trainer", evaluation_strategy="epoch", report_to="none" ) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics=compute_metrics, ) # [2] Report Metrics and Checkpoints to Ray Train # =============================================== callback = ray.train.huggingface.transformers.RayTrainReportCallback() trainer.add_callback(callback) # [3] Prepare Transformers Trainer # ================================ trainer = ray.train.huggingface.transformers.prepare_trainer(trainer) # Start Training trainer.train() # [4] Define a Ray TorchTrainer to launch `train_func` on all workers # =================================================================== ray_trainer = TorchTrainer( train_func, scaling_config=ScalingConfig(num_workers=4, use_gpu=True) ) ray_trainer.fit()
First, update your training code to support distributed training. You can begin by wrapping your code in a :ref:`training function <train-overview-training-function>`:
def train_func(config):
# Your Transformers training code here.
This function executes on each distributed training worker. Ray Train sets up the distributed process group on each worker before entering this function.
Put all the logic into this function, including dataset construction and preprocessing, model initialization, transformers trainer definition and more.
Note
If you are using Hugging Face Datasets or Evaluate, make sure to call datasets.load_dataset
and evaluate.load
inside the training function. Don't pass the loaded datasets and metrics from outside of the training
function, because it might cause serialization errors while transferring the objects to the workers.
To persist your checkpoints and monitor training progress, add a :class:`ray.train.huggingface.transformers.RayTrainReportCallback` utility callback to your Trainer.
import transformers
from ray.train.huggingface.transformers import RayTrainReportCallback
def train_func(config):
...
trainer = transformers.Trainer(...)
+ trainer.add_callback(RayTrainReportCallback())
...
Reporting metrics and checkpoints to Ray Train ensures that you can use Ray Tune and :ref:`fault-tolerant training <train-fault-tolerance>`. Note that the :class:`ray.train.huggingface.transformers.RayTrainReportCallback` only provides a simple implementation, and you can :ref:`further customize <train-dl-saving-checkpoints>` it.
Finally, pass your Transformers Trainer into :meth:`~ray.train.huggingface.transformers.prepare_trainer` to validate your configurations and enable Ray Data Integration.
import transformers
import ray.train.huggingface.transformers
def train_func(config):
...
trainer = transformers.Trainer(...)
+ trainer = ray.train.huggingface.transformers.prepare_trainer(trainer)
trainer.train()
...
Outside of your training function, create a :class:`~ray.train.ScalingConfig` object to configure:
- num_workers - The number of distributed training worker processes.
- use_gpu - Whether each worker should use a GPU (or CPU).
from ray.train import ScalingConfig
scaling_config = ScalingConfig(num_workers=2, use_gpu=True)
For more details, see :ref:`train_scaling_config`.
Tying this all together, you can now launch a distributed training job with a :class:`~ray.train.torch.TorchTrainer`.
from ray.train.torch import TorchTrainer
trainer = TorchTrainer(train_func, scaling_config=scaling_config)
result = trainer.fit()
Refer to :ref:`train-run-config` for more configuration options for TorchTrainer.
After training completes, a :class:`~ray.train.Result` object is returned which contains information about the training run, including the metrics and checkpoints reported during training.
result.metrics # The metrics reported during training.
result.checkpoint # The latest checkpoint reported during training.
result.path # The path where logs are stored.
result.error # The exception that was raised, if training failed.
After you have converted your Hugging Face Transformers training script to use Ray Train:
- See :ref:`User Guides <train-user-guides>` to learn more about how to perform specific tasks.
- Browse the :ref:`Examples <train-examples>` for end-to-end examples of how to use Ray Train.
- Dive into the :ref:`API Reference <train-api>` for more details on the classes and methods used in this tutorial.
Ray 2.1 introduced the TransformersTrainer, which exposes a trainer_init_per_worker interface to define transformers.Trainer, then runs a pre-defined training function in a black box.
Ray 2.7 introduced the newly unified :class:`~ray.train.torch.TorchTrainer` API, which offers enhanced transparency, flexibility, and simplicity. This API aligns more with standard Hugging Face Transformers scripts, ensuring that you have better control over your native Transformers training code.
.. tabs:: .. group-tab:: (Deprecating) TransformersTrainer .. code-block:: python import transformers from transformers import AutoConfig, AutoModelForCausalLM from datasets import load_dataset import ray from ray.train.huggingface import TransformersTrainer from ray.train import ScalingConfig # Dataset def preprocess(examples): ... hf_datasets = load_dataset("wikitext", "wikitext-2-raw-v1") processed_ds = hf_datasets.map(preprocess, ...) ray_train_ds = ray.data.from_huggingface(processed_ds["train"]) ray_eval_ds = ray.data.from_huggingface(processed_ds["validation"]) # Define the Trainer generation function def trainer_init_per_worker(train_dataset, eval_dataset, **config): MODEL_NAME = "gpt2" model_config = AutoConfig.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_config(model_config) args = transformers.TrainingArguments( output_dir=f"{MODEL_NAME}-wikitext2", evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", learning_rate=2e-5, weight_decay=0.01, max_steps=100, ) return transformers.Trainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) # Build a Ray TransformersTrainer scaling_config = ScalingConfig(num_workers=4, use_gpu=True) ray_trainer = TransformersTrainer( trainer_init_per_worker=trainer_init_per_worker, scaling_config=scaling_config, datasets={"train": ray_train_ds, "evaluation": ray_eval_ds}, ) result = ray_trainer.fit() .. group-tab:: (New API) TorchTrainer .. code-block:: python import transformers from transformers import AutoConfig, AutoModelForCausalLM from datasets import load_dataset import ray from ray.train.huggingface.transformers import ( RayTrainReportCallback, prepare_trainer, ) from ray.train import ScalingConfig # Dataset def preprocess(examples): ... hf_datasets = load_dataset("wikitext", "wikitext-2-raw-v1") processed_ds = hf_datasets.map(preprocess, ...) ray_train_ds = ray.data.from_huggingface(processed_ds["train"]) ray_eval_ds = ray.data.from_huggingface(processed_ds["evaluation"]) # [1] Define the full training function # ===================================== def train_func(config): MODEL_NAME = "gpt2" model_config = AutoConfig.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_config(model_config) # [2] Build Ray Data iterables # ============================ train_dataset = ray.train.get_dataset_shard("train") eval_dataset = ray.train.get_dataset_shard("evaluation") train_iterable_ds = train_dataset.iter_torch_batches(batch_size=8) eval_iterable_ds = eval_dataset.iter_torch_batches(batch_size=8) args = transformers.TrainingArguments( output_dir=f"{MODEL_NAME}-wikitext2", evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", learning_rate=2e-5, weight_decay=0.01, max_steps=100, ) trainer = transformers.Trainer( model=model, args=args, train_dataset=train_iterable_ds, eval_dataset=eval_iterable_ds, ) # [3] Inject Ray Train Report Callback # ==================================== trainer.add_callback(RayTrainReportCallback()) # [4] Prepare your trainer # ======================== trainer = prepare_trainer(trainer) trainer.train() # Build a Ray TorchTrainer scaling_config = ScalingConfig(num_workers=4, use_gpu=True) ray_trainer = TorchTrainer( train_func, scaling_config=scaling_config, datasets={"train": ray_train_ds, "evaluation": ray_eval_ds}, ) result = ray_trainer.fit()