Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Windows issue #3

Closed
SoftologyPro opened this issue Dec 10, 2023 · 19 comments
Closed

Windows issue #3

SoftologyPro opened this issue Dec 10, 2023 · 19 comments

Comments

@SoftologyPro
Copy link

When I click RunAll under Windows I get
OSError: [WinError 123] The filename, directory name, or volume label syntax is incorrect: 'D:\\Tests\\RAVE/results/12-10-2023/woman_test/C:'
As if it always appends C: to the path for some reason that causes the script to fail.
Full error

Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 456, in call_prediction
    output = await route_utils.call_process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\route_utils.py", line 232, in call_process_api
    output = await app.get_blocks().process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1522, in process_api
    result = await self.call_function(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1144, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\utils.py", line 674, in wrapper
    response = f(*args, **kwargs)
  File "D:\Tests\RAVE\webui.py", line 114, in run
    input_ns = init_paths(input_ns)
  File "D:\Tests\RAVE\webui.py", line 34, in init_paths
    os.makedirs(save_dir, exist_ok=True)
  File "D:\Python\lib\os.py", line 215, in makedirs
    makedirs(head, exist_ok=exist_ok)
  File "D:\Python\lib\os.py", line 215, in makedirs
    makedirs(head, exist_ok=exist_ok)
  File "D:\Python\lib\os.py", line 215, in makedirs
    makedirs(head, exist_ok=exist_ok)
  [Previous line repeated 5 more times]
  File "D:\Python\lib\os.py", line 225, in makedirs
    mkdir(name, mode)
OSError: [WinError 123] The filename, directory name, or volume label syntax is incorrect: 'D:\\Tests\\RAVE/results/12-10-2023/woman_test/C:'
Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 456, in call_prediction
    output = await route_utils.call_process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\route_utils.py", line 232, in call_process_api
    output = await app.get_blocks().process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1522, in process_api
    result = await self.call_function(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1144, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\utils.py", line 674, in wrapper
    response = f(*args, **kwargs)
  File "D:\Tests\RAVE\webui.py", line 114, in run
    input_ns = init_paths(input_ns)
  File "D:\Tests\RAVE\webui.py", line 34, in init_paths
    os.makedirs(save_dir, exist_ok=True)
  File "D:\Python\lib\os.py", line 215, in makedirs
    makedirs(head, exist_ok=exist_ok)
  File "D:\Python\lib\os.py", line 215, in makedirs
    makedirs(head, exist_ok=exist_ok)
  File "D:\Python\lib\os.py", line 215, in makedirs
    makedirs(head, exist_ok=exist_ok)
  [Previous line repeated 5 more times]
  File "D:\Python\lib\os.py", line 225, in makedirs
    mkdir(name, mode)
OSError: [WinError 123] The filename, directory name, or volume label syntax is incorrect: 'D:\\Tests\\RAVE/results/12-10-2023/woman_test/C:'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 501, in process_events
    response = await self.call_prediction(awake_events, batch)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 465, in call_prediction
    raise Exception(str(error) if show_error else None) from error
Exception: None
@Gitterman69
Copy link

bump - same

@ozgurkara99
Copy link
Collaborator

Thank you for your interest and opening issue, we are working on the demo to be able to run in Windows, and the instructions for Windows will be available soon. We would suggest you to use Linux OS.

@ozgurkara99
Copy link
Collaborator

ozgurkara99 commented Dec 10, 2023

@SoftologyPro @Gitterman69

Could you please give more details? At which step have you encountered that error? It is when you click 'Run' button? In the recent commit, I have updated the paths such that it should become compatible with Windows. Thanks

@SoftologyPro
Copy link
Author

SoftologyPro commented Dec 10, 2023

New error now. I use the settings shown in the screenshot below. When I click Run All I get these errors.
Do I need to manually download some extra models?

C:\Users\Jason\AppData\Local\Temp\gradio\8aad7b5c09060a0858874df8fd3cce2a390d68b2\wolf.mp4
Frame count: 4
vae\diffusion_pytorch_model.safetensors not found
Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 456, in call_prediction
    output = await route_utils.call_process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\route_utils.py", line 232, in call_process_api
    output = await app.get_blocks().process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1522, in process_api
    result = await self.call_function(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1144, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\utils.py", line 674, in wrapper
    response = f(*args, **kwargs)
  File "D:\Tests\RAVE\webui.py", line 132, in run
    CN.init_models(input_ns.hf_cn_path, input_ns.hf_path, input_ns.preprocess_name, input_ns.model_id)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 49, in init_models
    pipe = self.__init_pipe(hf_cn_path, hf_path)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 43, in __init_pipe
    pipe.enable_xformers_memory_efficient_attention()
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1442, in enable_xformers_memory_efficient_attention
    self.set_use_memory_efficient_attention_xformers(True, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1468, in set_use_memory_efficient_attention_xformers
    fn_recursive_set_mem_eff(module)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1458, in fn_recursive_set_mem_eff
    module.set_use_memory_efficient_attention_xformers(valid, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 227, in set_use_memory_efficient_attention_xformers
    fn_recursive_set_mem_eff(module)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 220, in fn_recursive_set_mem_eff
    module.set_use_memory_efficient_attention_xformers(valid, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 227, in set_use_memory_efficient_attention_xformers
    fn_recursive_set_mem_eff(module)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 220, in fn_recursive_set_mem_eff
    module.set_use_memory_efficient_attention_xformers(valid, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\attention_processor.py", line 192, in set_use_memory_efficient_attention_xformers
    raise ModuleNotFoundError(
ModuleNotFoundError: Refer to https://github.com/facebookresearch/xformers for more information on how to install xformers
Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 456, in call_prediction
    output = await route_utils.call_process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\route_utils.py", line 232, in call_process_api
    output = await app.get_blocks().process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1522, in process_api
    result = await self.call_function(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1144, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\utils.py", line 674, in wrapper
    response = f(*args, **kwargs)
  File "D:\Tests\RAVE\webui.py", line 132, in run
    CN.init_models(input_ns.hf_cn_path, input_ns.hf_path, input_ns.preprocess_name, input_ns.model_id)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 49, in init_models
    pipe = self.__init_pipe(hf_cn_path, hf_path)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 43, in __init_pipe
    pipe.enable_xformers_memory_efficient_attention()
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1442, in enable_xformers_memory_efficient_attention
    self.set_use_memory_efficient_attention_xformers(True, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1468, in set_use_memory_efficient_attention_xformers
    fn_recursive_set_mem_eff(module)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1458, in fn_recursive_set_mem_eff
    module.set_use_memory_efficient_attention_xformers(valid, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 227, in set_use_memory_efficient_attention_xformers
    fn_recursive_set_mem_eff(module)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 220, in fn_recursive_set_mem_eff
    module.set_use_memory_efficient_attention_xformers(valid, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 227, in set_use_memory_efficient_attention_xformers
    fn_recursive_set_mem_eff(module)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
    fn_recursive_set_mem_eff(child)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\modeling_utils.py", line 220, in fn_recursive_set_mem_eff
    module.set_use_memory_efficient_attention_xformers(valid, attention_op)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\diffusers\models\attention_processor.py", line 192, in set_use_memory_efficient_attention_xformers
    raise ModuleNotFoundError(
ModuleNotFoundError: Refer to https://github.com/facebookresearch/xformers for more information on how to install xformers

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 501, in process_events
    response = await self.call_prediction(awake_events, batch)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 465, in call_prediction
    raise Exception(str(error) if show_error else None) from error
Exception: None

image

@ozgurkara99
Copy link
Collaborator

it seems that you have not properly installed 'xformers' library to your environment. Please run
pip install xformers==0.0.20
to install it.

@SoftologyPro
Copy link
Author

OK, thanks, that worked. Got a bit further. The model downloaded OK, then this error
zoedepth key error?

Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 456, in call_prediction
    output = await route_utils.call_process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\route_utils.py", line 232, in call_process_api
    output = await app.get_blocks().process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1522, in process_api
    result = await self.call_function(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1144, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\utils.py", line 674, in wrapper
    response = f(*args, **kwargs)
  File "D:\Tests\RAVE\webui.py", line 143, in run
    res_vid, control_vid = CN(input_dict)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 399, in __call__
    img_batch, control_batch = self.process_image_batch(input_dict['image_pil_list'])
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 311, in process_image_batch
    control_pil = self.preprocess_control_grid(image_pil)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 140, in preprocess_control_grid
    list_of_pils = [pu.pixel_perfect_process(np.array(frame_pil, dtype='uint8'), self.preprocess_name) for frame_pil in list_of_image_pils]
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 140, in <listcomp>
    list_of_pils = [pu.pixel_perfect_process(np.array(frame_pil, dtype='uint8'), self.preprocess_name) for frame_pil in list_of_image_pils]
  File "D:\Tests\RAVE\utils\preprocesser_utils.py", line 211, in pixel_perfect_process
    detected_map, _ = preprocessors_dict[p_name](input_image, res=preprocessor_resolution)
  File "D:\Tests\RAVE\utils\preprocesser_utils.py", line 187, in zoe_depth
    result = model_zoe_depth(img)
  File "D:\Tests\RAVE\annotator\zoe\__init__.py", line 38, in __call__
    self.load_model()
  File "D:\Tests\RAVE\annotator\zoe\__init__.py", line 26, in load_model
    conf = get_config("zoedepth", "infer")
  File "D:\Tests\RAVE\annotator\zoe\zoedepth\utils\config.py", line 384, in get_config
    version_name = overwrite_kwargs.get("version_name", config["version_name"])
KeyError: 'version_name'
Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 456, in call_prediction
    output = await route_utils.call_process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\route_utils.py", line 232, in call_process_api
    output = await app.get_blocks().process_api(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1522, in process_api
    result = await self.call_function(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\blocks.py", line 1144, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\utils.py", line 674, in wrapper
    response = f(*args, **kwargs)
  File "D:\Tests\RAVE\webui.py", line 143, in run
    res_vid, control_vid = CN(input_dict)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 399, in __call__
    img_batch, control_batch = self.process_image_batch(input_dict['image_pil_list'])
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 311, in process_image_batch
    control_pil = self.preprocess_control_grid(image_pil)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 140, in preprocess_control_grid
    list_of_pils = [pu.pixel_perfect_process(np.array(frame_pil, dtype='uint8'), self.preprocess_name) for frame_pil in list_of_image_pils]
  File "D:\Tests\RAVE\pipelines\sd_controlnet_rave.py", line 140, in <listcomp>
    list_of_pils = [pu.pixel_perfect_process(np.array(frame_pil, dtype='uint8'), self.preprocess_name) for frame_pil in list_of_image_pils]
  File "D:\Tests\RAVE\utils\preprocesser_utils.py", line 211, in pixel_perfect_process
    detected_map, _ = preprocessors_dict[p_name](input_image, res=preprocessor_resolution)
  File "D:\Tests\RAVE\utils\preprocesser_utils.py", line 187, in zoe_depth
    result = model_zoe_depth(img)
  File "D:\Tests\RAVE\annotator\zoe\__init__.py", line 38, in __call__
    self.load_model()
  File "D:\Tests\RAVE\annotator\zoe\__init__.py", line 26, in load_model
    conf = get_config("zoedepth", "infer")
  File "D:\Tests\RAVE\annotator\zoe\zoedepth\utils\config.py", line 384, in get_config
    version_name = overwrite_kwargs.get("version_name", config["version_name"])
KeyError: 'version_name'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 501, in process_events
    response = await self.call_prediction(awake_events, batch)
  File "D:\Tests\RAVE\voc_rave\lib\site-packages\gradio\queueing.py", line 465, in call_prediction
    raise Exception(str(error) if show_error else None) from error
Exception: None

@ozgurkara99
Copy link
Collaborator

@SoftologyPro Hey, could you please pull and try? I realized that I missed the json files required for depthzoe, now it should work. Thanks

@SoftologyPro
Copy link
Author

OK, getting further now. It would be good to have an x/y steps for these stats.

img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]
img_size [384, 512]

It is now at a stage that has an estimated 1 hour to go? Is this normal? I will let it run and see if it completes.
5%|███████████▌ | 1/20 [03:21<1:03:41, 201.13s/it]

@ozgurkara99
Copy link
Collaborator

hey @SoftologyPro it is not normal, it is taking around 1-2s/it at most for the wolf video (512x512 sized video). I think you might be using CPU instead of GPU/CUDA.

@SoftologyPro
Copy link
Author

SoftologyPro commented Dec 10, 2023

I thought so too at first, but CPU is 2% and GPU is pegged at 100%.
Still going here (and I accidentally killed it, will let it run again and see if it finishes)
| 12/20 [42:04<28:09, 211.16s/it]
I've got xformers, accelerate and GPU torch.

@ozgurkara99
Copy link
Collaborator

what gpu are you using?

@SoftologyPro
Copy link
Author

4090 24 GB

@SoftologyPro
Copy link
Author

Wait, I just rebooted and restarted the wolf. Now only 7 minutes estimated. 17.22s/it

@ozgurkara99
Copy link
Collaborator

hey, here I am also using 4090 with 24 gbs, here it's around 3s/it. Maybe could you try increasing the batch size?

image

@SoftologyPro
Copy link
Author

SoftologyPro commented Dec 10, 2023

hey, here I am also using 4090 with 24 gbs, here it's around 3s/it. Maybe could you try increasing the batch size?

image

What batch size are you using?

@ozgurkara99
Copy link
Collaborator

it's 4 on my end

@SoftologyPro
Copy link
Author

SoftologyPro commented Dec 10, 2023

it's 4 on my end

4 here too. That is the default. You are running under Linux though right? May make a difference.

@SoftologyPro
Copy link
Author

Raising batch size to 10 does not seem to help the speed.
Anyway, it works now. I will do some tetsts on other PCs.

@ozgurkara99
Copy link
Collaborator

Feel free to do tests, I am closing the issue.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants