-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_imgnet.py
87 lines (76 loc) · 4.15 KB
/
train_imgnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
from utils.utils0 import raise_if_nonpositive_any, show_args, ArgParser_HelpWithDefaults
from gulf import is_gulf
from image.imgnet_train import main as imgnet_train
#----------------------------------------------------------
def add_args_(parser):
parser.add_argument('--model', default='resnet50pre', type=str,
choices=['resnet50pre','wrn50-2pre'], help='Model type.')
parser.add_argument('--ini_type', default='iniBase/2', type=str, choices=['iniBase','iniBase/2'],
help='Parameter initialization method.')
parser.add_argument('--alpha', default=0.5, type=float, help='Alpha.')
parser.add_argument('--num_stages', type=int, help='Number of stages.')
parser.add_argument('--dataroot', type=str, required=True, help='Root directory of the ImageNet data.')
parser.add_argument('--nthread', default=20, type=int, help='Number of workers for training.')
parser.add_argument('--nthread_test', default=4, type=int, help='Number of workers for testing.')
parser.add_argument('--save', default='', type=str, help='Pathname for saving models.')
parser.add_argument('--resume', default='', type=str, help='Pathname for resuming.')
parser.add_argument('--csv_fn', default='', type=str, help='Pathname for writing test results in the CSV format.')
parser.add_argument('--seed', default=1, type=int, help='Random seed.')
parser.add_argument('--ngpu', type=int, help='Number of GPUs.')
parser.add_argument('--verbose', action='store_true', help='Display more info.')
#----------------------------------------------------------
def check_args_(opt):
opt.dtype = 'float'
#--- gulf
opt.m = -1
opt.fc_name = 'fc' # Name of the last fully-connected layer
opt.initial = ''; opt.do_iniBase = False
opt.fc_scale = 0.5 if opt.ini_type.endswith('/2') else -1
#--- optimization
if opt.num_stages is None:
opt.num_stages = 3 if opt.model.startswith('resnet') else 1
opt.max_count = 90 # Length of each stage. 90 epochs.
opt.do_count_epochs = True # If ture, the unit of max_count and decay_lr_at is epochs.
opt.batch_size = 256 # Mini-batch size
opt.lr = 0.1 # Learning rate
opt.decay_lr_at = [30, 60] # When to decay the learning rate
opt.lr_decay_ratio = 0.1 # Learning rate decay ratio
opt.weight_decay = 0.0001 # Weight decay lambda
#--- data
opt.dataset = 'ImageNet'
opt.do_download = False # If true, download data if it does not exist
opt.do_augment = 1 # Augment data.
opt.ndev = 10000 # Size of dev. set held out from training data.
opt.dev_seed = 7
#--- testing
opt.do_top5 = True # Show top-5 error rates.
opt.test_inc = 100 # Interval of showing progress of testing
opt.test_interval = 5 # Test after every 5 epochs
opt.inc = 100 # Interval of showing progress of training
#--- number of GPUs
if opt.ngpu is None:
opt.ngpu = 4 if opt.model.startswith('wrn') else 2
#--- check values and display ...
if is_gulf(opt):
raise_if_nonpositive_any(opt, ['alpha'])
show_args(opt, ['ini_type','alpha','m'], 'GULF ------')
raise_if_nonpositive_any(opt, ['max_count','batch_size','lr','lr_decay_ratio','num_stages'])
show_args(opt, ['max_count','do_count_epochs', 'batch_size','weight_decay','decay_lr_at','lr_decay_ratio','lr','num_stages'],
'Optimization ------')
raise_if_nonpositive_any(opt, ['ndev'])
show_args(opt, ['dataset','dataroot','do_augment','do_download','ndev','dev_seed'], 'Data -----')
show_args(opt, ['nthread','nthread_test'], 'Number of workers -----')
show_args(opt, ['save','csv_fn','test_interval'], 'Others ------')
show_args(opt, ['model'], 'Model ---')
raise_if_nonpositive_any(opt, ['ngpu'])
show_args(opt, ['seed','ngpu','verbose'], 'Miscellaneous ---')
#********************************************************************
def main():
parser = ArgParser_HelpWithDefaults(description='train_imgnet', formatter_class=argparse.MetavarTypeHelpFormatter)
add_args_(parser)
opt = parser.parse_args()
check_args_(opt)
imgnet_train(opt)
if __name__ == '__main__':
main()