-
Notifications
You must be signed in to change notification settings - Fork 0
/
testing.py
87 lines (74 loc) · 3.88 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#Script to evaluate our model
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-bad-import-order,unused-import
"""Tests the graph freezing tool."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.examples.image_retraining import retrain
from tensorflow.python.framework import test_util
class ImageRetrainingTest(test_util.TensorFlowTestCase):
def dummyImageLists(self):
return {'label_one': {'dir': 'somedir', 'training': ['image_one.jpg',
'image_two.jpg'],
'testing': ['image_three.jpg', 'image_four.jpg'],
'validation': ['image_five.jpg', 'image_six.jpg']},
'label_two': {'dir': 'otherdir', 'training': ['image_one.jpg',
'image_two.jpg'],
'testing': ['image_three.jpg', 'image_four.jpg'],
'validation': ['image_five.jpg', 'image_six.jpg']}}
def testGetImagePath(self):
image_lists = self.dummyImageLists()
self.assertEqual('image_dir/somedir/image_one.jpg', retrain.get_image_path(
image_lists, 'label_one', 0, 'image_dir', 'training'))
self.assertEqual('image_dir/otherdir/image_four.jpg',
retrain.get_image_path(image_lists, 'label_two', 1,
'image_dir', 'testing'))
def testGetBottleneckPath(self):
image_lists = self.dummyImageLists()
self.assertEqual('bottleneck_dir/somedir/image_five.jpg.txt',
retrain.get_bottleneck_path(
image_lists, 'label_one', 0, 'bottleneck_dir',
'validation'))
def testShouldDistortImage(self):
self.assertEqual(False, retrain.should_distort_images(False, 0, 0, 0))
self.assertEqual(True, retrain.should_distort_images(True, 0, 0, 0))
self.assertEqual(True, retrain.should_distort_images(False, 10, 0, 0))
self.assertEqual(True, retrain.should_distort_images(False, 0, 1, 0))
self.assertEqual(True, retrain.should_distort_images(False, 0, 0, 50))
def testAddInputDistortions(self):
with tf.Graph().as_default():
with tf.Session() as sess:
retrain.add_input_distortions(True, 10, 10, 10)
self.assertIsNotNone(sess.graph.get_tensor_by_name('DistortJPGInput:0'))
self.assertIsNotNone(sess.graph.get_tensor_by_name('DistortResult:0'))
@tf.test.mock.patch.object(retrain, 'FLAGS', learning_rate=0.01)
def testAddFinalTrainingOps(self, flags_mock):
with tf.Graph().as_default():
with tf.Session() as sess:
bottleneck = tf.placeholder(
tf.float32, [1, retrain.BOTTLENECK_TENSOR_SIZE],
name=retrain.BOTTLENECK_TENSOR_NAME.split(':')[0])
retrain.add_final_training_ops(5, 'final', bottleneck)
self.assertIsNotNone(sess.graph.get_tensor_by_name('final:0'))
def testAddEvaluationStep(self):
with tf.Graph().as_default():
final = tf.placeholder(tf.float32, [1], name='final')
gt = tf.placeholder(tf.float32, [1], name='gt')
self.assertIsNotNone(retrain.add_evaluation_step(final, gt))
if __name__ == '__main__':
tf.test.main()