Library of python routines to read MESA ouput files and plot MESA quantites
Python Makefile
Switch branches/tags
Clone or download
rjfarmer Remove long_description from setup.py
Too many issues with encoding

Closes #15 #17
Latest commit 984c42c Jul 13, 2018

README.md

DOI

mesaplot

Library of python routines to read MESA ouput files and plot MESA quantites

Installation instructions:

git clone the repo then either call

python setup.py install 
python3 setup.py install 

Depending on choice of python version, --user can also be passed to install locally

make

Can be called as well, which just wraps installing both the python and python3 versions

Contributing

Bug reports should go to githubs issue tracker.

Requests for new features should also got to the issue tracker.

If you wish to submit your own fix/new feature please send a pull request.

Reading data:

import mesaPlot as mp
m=mp.MESA()

Now m contains all the useful stuff

History files

m.loadHistory()

This loads up the history file data by default it will look for LOGS/history.data. But if you have a different folder to look at then you can either

m.log_fold='new_folder/LOGS/'
m.loadHistory()

or

m.loadHistory(f='new_folder/LOGS/')

Note this will automatically clean the history data of retries, backups and restarts. To write that data back to disk

m.scrubHistory()

Which will create a file "LOGS/history.data.scrubbed" if you don't want that then:

m.scrubHistory(fileOut='newFile')

Data can be accessed as m.hist.data['COLUMN_NAME'] or m.hist.COLUMN_NAME. The second option is also tab completable. The header information is either m.hist.head['COLUMN_NAME'] or m.hist.COLUMN_NAME.

Profile files

To load a profile file its:

m.loadProfile()

Again you change the LOGS folder either with log_fold or f=. To choose which file to load, either:

m.loadProfile(num=MODEL_NUMBER)
or
m.loadProfile(prof=PROFILE_NUMBER)

Where MODEL_NUMBER is a MESA model number and PROFILE_NUMBER is the number in the profile file name. You can also set a mode

m.loadProfile(num=MODEL_NUMBER,mode='first|lower|upper|nearest')

This is for when the model you want isn't in the data. Either we load the first model, the model just before the one you want, the model just after the one you want or the nearest (above or below) the model you want. There are also two special model numbers 0 for first model and a negative number that counts backwards (-1 is the last model, -2 is last but one etc)

Data can be accessed as m.prof.data['COLUMN_NAME'] or m.prof.COLUMN_NAME. The second option is also tab completable. The header information is either m.prof.head['COLUMN_NAME'] or m.prof.COLUMN_NAME.

Plotting

Here we'll show the basics of plotting, there are more complex examples for each section. Commands will assume you are in a MESA work folder, such that the data is in a LOGS/ folder.

History data

More on history plots

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotHistory(m,xaxis='star_age',y1='log_center_T',y2='he_core_mass')

Profile data

More on profile plots

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotProfile(m,xaxis='mass',y1='logT',y2='ye')

HR

More on HR plots

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotHR(m)

Kippenhan's

More on Kippenhan plots

Kippenhan plot with model number vs mass. Note all Kippenhan plots require your history file to have both mixing_regions X and burning_regions Y set in your history_columns.list file, where X and Y are integers that specify the maximum number of mixing/burning zones in your model, values around 20 will usually suffice. Models going to core collapse may want to increase this limit to 40.

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotKip(m,show_mass_loc=True)

Kippenhan plot with star age vs mass

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotKip2(m)

Generic kippenhan plotter

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotKip3(m,show_mass_loc=True)

Kippenhan plotKip3 SAGB star

New way of doing plotKip2 (star age vs mass)

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotKip3(m,xaxis='star_age',age_lookback=True,age_log=True)

Kippenhan plotKip3 SAGB star 2

Profile based kippenhan's

import mesaPlot as mp

m=mp.MESA()
m.loadHistory()
m.loadProfile(num=1)
p=mp.plot()
p.plotKip3(m,plot_type='profile',xaxis='model_number',yaxis='mass',zaxis='logRho',mod_min=1,mod_max=3000)

Kippenhan plotKip3 SAGB star 3

Abundances

More on abundance plots

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotAbun(m)

Basic abundance plot

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotAbunByA(m)

Production plot

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
m2=mp.MESA()
m2.log_fold='../some/other/mesa/result'
m2.loadprofile(num=-1)
p.plotAbunByA(m,m2=m2)
import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
p.set_solar('ag89')
m.loadProfile(num=-1)
#Plot the mass fractions relative to solar
p.plotAbunByA(m,stable=True)
import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
p.set_solar('ag89')
m.loadProfile(num=-1)
m2=mp.MESA()
m2.log_fold='../some/other/mesa/result'
m2.loadprofile(num=-1)
#Plot the mass fractions relative to solar relative to 2nd model
p.plotAbunByA(m,m2=m2,stable=True)
import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
#Use the data in the history file at model_number==model
p.plotAbunByA(m,plot_type='history',model=1000,prefix='log_center_')
import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
p.set_solar('ag89')
m.loadHistory()
#Use the data in the history file, plotting relative to another model number after decaying the isotopes to thier stable versions
p.plotAbunByA(m,plot_type='history',model=1000,model2=1,prefix='surface_',stable=True)
import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotAbunPAndN(m)

Nuclear abundances plot

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotAbunPAndN(m,plot_type='history',model=1000,prefix='log_center_')
import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotAbunHist(m)

Burn data

More on burn plots

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotBurn(m)
import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadHistory()
p.plotBurnHist(m)

Dynamos

More on dynamo plots

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotDynamo(m)

Dynamo  50M_z2m2_high_rotation

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotDyanmo2(m)

Dyanmo 2 50M_z2m2_high_rotation

Angular momentum mixing

More on angular momentum plots

import mesaPlot as mp
m=mp.MESA()
p=mp.plot()
m.loadProfile(num=-1)
p.plotAngMom(m)

Time series Profile plots

import mesaPlot as mp

m=mp.MESA()
m.loadHistory()
m.loadProfile(num=1)
p=mp.plot()
p.plotSliderProf(m,'plotAbun')

Passing in a string, the name of a plotting function, (only ones based on profile data), will show that plot with a slider that can be used to iterate over the profile files available. plotSliderProf will take any extra arguments parsed to it and pass them to the plotting function.

Stacked plots

More on stacked plots

Multi profile plots

More on multi profile plots

Grid plotting

More on grid plots