-
Notifications
You must be signed in to change notification settings - Fork 172
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Questions about using the given dataset for training(such as miniImagenet) and using my own dataset for testing! #54
Comments
Yes, you need to process your dataset in such a format and set the Another solution is to modify the |
其实我是想试试先用miniImagenet训练得到一个不错的model,然后再用这个model在自己的数据集上测试。 另外我刚跑run_test.py代码报了如下错误: 请问这是什么原因呢? |
请重新pull一下代码,这个问题前几天修复了一下 |
您好,我又有新问题了:)。 Hope your reply! |
MAML的过程内循环更新θ',外循环通过θ'更新θ。 其中内循环通过手动更新的方式进行的原因是如果内循环使用pytorch的optimizer进行更新,pytorch不可避免地会进行梯度释放等操作,难以处理。但是外循环θ的更新,可以直接使用pytorch的optimizer进行更新,这一步和其他的方法并没有什么不同,因此封装在了trainer.py中。 因此maml.py中并没有外循环更新的代码。 |
Hello, as described in the title, how do I handle my own dataset after training with the miniImagenet dataset you have given ? For example,my dataset has 4 classes and each class has about 100 images,
Do I need to process my dataset into the following format?
MyDataset_folder/
├── images/
│ ├── images_1.jpg
│ ├── ...
│ └── images_n.jpg
├── train.csv *
├── test.csv *
└── val.csv *
Or do I need to put all my datasets into the miniImagenet dataset and create a new test.csv to replace the original test.csv in the miniImagenet dataset?
Or other methods?
Look forward to your reply, thank you!
The text was updated successfully, but these errors were encountered: