-
Notifications
You must be signed in to change notification settings - Fork 0
/
INFO.txt
67 lines (42 loc) · 2.91 KB
/
INFO.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
The dataset is taken from the UCI repository (Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science)
Link to the dataset: https://archive.ics.uci.edu/ml/datasets/wine+quality
********************************************************************************
NOTE: For the project the classes have been binarized - Feature 12 is simply 0 (low quality, <= 5) or 1 (high quality, >= 7).
To simplify the problem, wines with quality 6 have been removed. Red and white wines have been merged into a single dataset
********************************************************************************
Below you can find the UCI description for the original dataset.
================================================================================
Source:
Paulo Cortez, University of Minho, Guimarães, Portugal, http://www3.dsi.uminho.pt/pcortez
A. Cerdeira, F. Almeida, T. Matos and J. Reis, Viticulture Commission of the Vinho Verde Region(CVRVV), Porto, Portugal
@2009
Data Set Information:
The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. For more details, consult: [Web Link] or the reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).
These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are many more normal wines than excellent or poor ones). Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.
Attribute Information:
For more information, read [Cortez et al., 2009].
Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Output variable (based on sensory data):
12 - quality (score between 0 and 10)
Relevant Papers:
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
Available at: [Web Link]
Citation Request:
Please include this citation if you plan to use this database:
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
================================================================================
The dataset has been split into Train and Evaluation (Test) data.
File winequality.names contains the original dataset information