Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

arguments imply differing number of rows #26

Open
bujnism opened this issue Oct 10, 2023 · 2 comments
Open

arguments imply differing number of rows #26

bujnism opened this issue Oct 10, 2023 · 2 comments

Comments

@bujnism
Copy link

bujnism commented Oct 10, 2023

Hello,

I have a list of phenotype exposures I am testing against my outcome of interest from my GWAS data. I am able to run MR PRESSO when I use the GWAS as the exposure, but not as outcome. The error message seems to be suggesting that it is due to the row numbers not being the same, but I don't see what the problem is with the input. It also runs most of the way.

I am running MR PRESSO within the TwoSampleMR package, but they do not offer any advice on using it. Have you seen this error before or possibly have any insight into this? Is it just indeed there are no outliers, or is that because of some error within the data?

Any advice would be greatly appreciated!

command:
resPRESSO<-run_mr_presso(dat_HToutcome,NbDistribution = 10000)

output:
Intelligence || id:ebi-a-GCST006250 - outcome
systolic blood pressure || id:ieu-b-38 - outcome
Alzheimer's disease || id:ieu-b-2 - outcome
Celiac disease || id:ebi-a-GCST005523 - outcome
HDL cholesterol || id:ieu-b-109 - outcome
Height || id:ieu-a-89 - outcome
Coronary heart disease || id:ieu-a-9 - outcome
diastolic blood pressure || id:ieu-b-39 - outcome
Rheumatoid arthritis || id:ebi-a-GCST90013534 - outcome
Sporadic miscarriage || id:ebi-a-GCST011888 - outcome
Schizophrenia || id:ieu-b-5070 - outcome
apolipoprotein A-I || id:ieu-b-107 - outcome
Ankylosing spondylitis || id:ebi-a-GCST005529 - outcome
triglycerides || id:ieu-b-111 - outcome
Heart rate || id:ieu-a-1056 - outcome
Atrial fibrillation || id:ebi-a-GCST006414 - outcome
Autism Spectrum Disorder || id:ieu-a-1185 - outcome
apolipoprotein B || id:ieu-b-108 - outcome
bipolar disorder || id:ieu-b-41 - outcome
multiple sclerosis || id:ieu-b-18 - outcome
Depression (broad) || id:ebi-a-GCST005902 - outcome
body mass index || id:ieu-b-40 - outcome
Sarcoidosis (non-Lofgren's syndrome) || id:ebi-a-GCST005543 - outcome
Psoriasis || id:ebi-a-GCST90019017 - outcome
Fasting glucose || id:ebi-a-GCST90002232 - outcome
Juvenile idiopathic arthritis (oligoarticular or rheumatoid factor-negative polyarticular) || id:ebi-a-GCST005528 - outcome
Major depression || id:ieu-b-102 - outcome
WARNING: MR-PRESSO failed for Intelligence || id:ebi-a-GCST006250 systolic blood pressure || id:ieu-b-38 Alzheimer's disease || id:ieu-b-2 Celiac disease || id:ebi-a-GCST005523 HDL cholesterol || id:ieu-b-109 Height || id:ieu-a-89 Coronary heart disease || id:ieu-a-9 diastolic blood pressure || id:ieu-b-39 Rheumatoid arthritis || id:ebi-a-GCST90013534 Sporadic miscarriage || id:ebi-a-GCST011888 Schizophrenia || id:ieu-b-5070 apolipoprotein A-I || id:ieu-b-107 Ankylosing spondylitis || id:ebi-a-GCST005529 triglycerides || id:ieu-b-111 Heart rate || id:ieu-a-1056 Atrial fibrillation || id:ebi-a-GCST006414 Autism Spectrum Disorder || id:ieu-a-1185 apolipoprotein B || id:ieu-b-108 bipolar disorder || id:ieu-b-41 multiple sclerosis || id:ieu-b-18 Depression (broad) || id:ebi-a-GCST005902 body mass index || id:ieu-b-40 Sarcoidosis (non-Lofgren's syndrome) || id:ebi-a-GCST005543 Psoriasis || id:ebi-a-GCST90019017 Fasting glucose || id:ebi-a-GCST90002232 Juvenile idiopathic arthritis (oligoarticular or rheumatoid factor-negative polyarticular) || id:ebi-a-GCST005528 Major depression || id:ieu-b-102 Heel bone mineral density || id:ebi-a-GCST006979 Sjogren's syndrome (SPA correction) || id:ebi-a-GCST90013929 HbA1C || id:ieu-b-103 Systemic lupus erythematosus || id:ebi-a-GCST90011866 Chronic gastritis || id:ebi-a-GCST90018825 LDL cholesterol || id:ieu-b-110 Type 1 diabetes || id:ebi-a-GCST90000529 Myocardial infarction || id:ieu-a-798 Ulcerative colitis || id:ieu-a-970 Cardiovascular disease || id:ebi-a-GCST90038595 Heart failure || id:ebi-a-GCST009541 Sarcoidosis (Lofgren's syndrome) || id:ebi-a-GCST005540 Total cholesterol || id:ieu-a-301 Triglycerides || id:ieu-a-302 Type 2 diabetes || id:ebi-a-GCST006867 Type 2 diabetes (adjusted for BMI) || id:ebi-a-GCST007518 -> outcome
<simpleError in data.frame(..., check.names = FALSE): arguments imply differing number of rows: 1, 0>
Warning messages:
1: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA
2: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA
3: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA
4: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA
5: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA
6: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA
7: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA
8: In MRPRESSO::mr_presso(BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure", :
No outlier were identified, therefore the results for the outlier-corrected MR are set to NA

@bujnism
Copy link
Author

bujnism commented Oct 10, 2023

Also, it errors at 27/41 of the input phenotypes to test. so it does not finish the run but gets quite far.

@YuHao0099
Copy link

Hi, @bujnism
Have you solved this problem yet?
I met with the same problem when running mr_presso( ) after harmonising data.
Thanks.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants