Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ols_step_forward_p(...) problem using the funtion ols_step_forward_p #200

Closed
Molina-Valero opened this issue Jul 29, 2022 · 6 comments
Closed

Comments

@Molina-Valero
Copy link

Molina-Valero commented Jul 29, 2022


Hello,

Please, could you help me with the next issue?:

I am getting the next error using the function ols_step_forward_p:

Error in if (pvals[minp] <= penter) { : the condition has length > 1
In addition: Warning messages:
1: In anova.lm(fullmodel) :
ANOVA F-tests on an essentially perfect fit are unreliable
2: In anova.lm(full_model) :
ANOVA F-tests on an essentially perfect fit are unreliable
3: In anova.lm(full_model) :
ANOVA F-tests on an essentially perfect fit are unreliable
4: In anova.lm(fullmodel) :
ANOVA F-tests on an essentially perfect fit are unreliable
5: In anova.lm(full_model) :
ANOVA F-tests on an essentially perfect fit are unreliable
6: In anova.lm(fullmodel) :
ANOVA F-tests on an essentially perfect fit are unreliable

The code I am runing is:

model<-lm(W.ha~., data=data)
model_f<-ols_step_forward_p(model, penter=0.1)
@Molina-Valero Molina-Valero changed the title ols_step_forward_p(...) problem using many potential predictors ols_step_forward_p(...) problem using the funtion ols_step_forward_p Jul 29, 2022
@aravindhebbali
Copy link
Member

Hi @Molina-Valero,

I think we have fixed a similar issue some time back but am not sure.. Can you install the development version from GitHub and check if you still get the error?

# Install development version from GitHub
# install.packages("devtools")
devtools::install_github("rsquaredacademy/olsrr")

I will look into it if the error still persists after using the development version of the package.

@Molina-Valero
Copy link
Author

Hi @aravindhebbali

Thank you for your help, but still have the same issue after installing the develpment version (0.6.0).

Sorry

@aravindhebbali
Copy link
Member

No issues.. While I look into this, let me know if you can share the data. It will help in debugging the error.

@Molina-Valero
Copy link
Author

Thank you! I am going to share the data later

@aravindhebbali
Copy link
Member

Sure

@aravindhebbali
Copy link
Member

Please install the develop branch of olsrr from GitHub for the fix:

# Install development version from GitHub
# install.packages("devtools")
devtools::install_github("rsquaredacademy/olsrr@develop")
# load library (development version)
library(olsrr)
  
# data
data <- read.csv('data.csv')
  
# model
model <- lm(W.ha ~ ., data = data)
  
# stepwise selection: use p_val instead of penter
ols_step_forward_p(model, p_val = 0.1)
 Stepwise Summary                            
----------------------------------------------------------------------
Step    Variable        AIC        SBC      SBIC      R2       Adj. R2 
----------------------------------------------------------------------
 0      Base Model    709.912    712.428      NA    0.00000    0.00000 
 1      p.b.mode.z    702.752    706.526      NA    0.29695    0.26766 
 2      var.r         698.076    703.108      NA    0.45616    0.40887 
 3      n.pts         694.380    700.671      NA    0.56314    0.50357 
 4      mode.rho      686.046    693.595      NA    0.70642    0.65050 
----------------------------------------------------------------------

Final Model Output 
------------------

                               Model Summary                                
---------------------------------------------------------------------------
R                           0.840       RMSE                    103103.928 
R-Squared                   0.706       MSE                13161472395.381 
Adj. R-Squared              0.651       Coef. Var                   17.008 
Pred R-Squared             -0.196       AIC                        686.046 
MAE                     82828.714       SBC                        693.595 
---------------------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error 
 AIC: Akaike Information Criteria 
 SBC: Schwarz Bayesian Criteria 

                                      ANOVA                                       
---------------------------------------------------------------------------------
                        Sum of                                                   
                       Squares        DF         Mean Square      F         Sig. 
---------------------------------------------------------------------------------
Regression    665061288539.530         4    166265322134.883    12.633    0.0000 
Residual      276390920302.999        21     13161472395.381                     
Total         941452208842.529        25                                         
---------------------------------------------------------------------------------

                                              Parameter Estimates                                               
---------------------------------------------------------------------------------------------------------------
      model             Beta      Std. Error    Std. Beta      t        Sig             lower            upper 
---------------------------------------------------------------------------------------------------------------
(Intercept)    -18071950.603     5929827.602                 -3.048    0.006    -30403702.181     -5740199.025 
 p.b.mode.z        -9058.961        1636.669       -0.682    -5.535    0.000       -12462.601        -5655.321 
      var.r         6535.221        1995.734        0.390     3.275    0.004         2384.865        10685.577 
      n.pts            7.607           2.320        0.406     3.279    0.004            2.783           12.432 
   mode.rho    189752863.663    59272447.405        0.389     3.201    0.004     66489061.429    313016665.897 
---------------------------------------------------------------------------------------------------------------

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants