We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,我是一名使用者,想用recbole-cdr进行跨域CTR任务,需要AUC与logloss做输出,但发现这两个指标输出效果很差。希望寻求参数/模型调整建议。 测试使用的是代码recbole_cdr/dataset_example下的两个数据集(source:ml-1m, target: ml-100k),使用theshold=4过滤标签。不论基础模型是哪个,输出的AUC都在0.6左右。但相同的target数据集使用其他地方的单域模型代码(测试用的deepfm)都能达到AUC>0.75。 我对一些超参数进行过调整(如xx_xx_num_interval, 学习率,valid_metric,甚至theshold=3等),但没有明显提升效果。 下面是我使用的recbole-cdr模型参数,请参考:
1.参数文件sample.yaml:
# dataset config gpu_id: 0 state: INFO field_separator: "\t" use_gpu: True seed: 2000 reproducibility: True data_path: 'dataset/' checkpoint_dir: 'saved' show_progress: True save_dataset: False dataset_save_path: ~ save_dataloaders: False dataloaders_save_path: ~ log_wandb: False wandb_project: 'recbole_cdr' normalize_all: True # training settings train_epochs: ["BOTH:300"] train_batch_size: 2048 learner: adam neg_sampling: uniform: 1 eval_step: 1 stopping_step: 10 clip_grad_norm: ~ weight_decay: 1e-3 loss_decimal_place: 6 require_pow: False # evaluation settings eval_args: split: {'RS':[0.8,0.1,0.1]} group_by: None mode: labeled repeatable: False metrics: ['AUC', 'LogLoss'] valid_metric: AUC valid_metric_bigger: True eval_batch_size: 2048 metric_decimal_place: 6 source_domain: dataset: ml-1m data_path: 'dataset/' seq_separator: " " USER_ID_FIELD: user_id ITEM_ID_FIELD: item_id RATING_FIELD: rating TIME_FIELD: timestamp NEG_PREFIX: neg_ LABEL_FIELD: label threshold: rating: 4 load_col: inter: [user_id, item_id, rating] user_inter_num_interval: "[5,inf)" item_inter_num_interval: "[5,inf)" val_interval: rating: "[3,inf)" drop_filter_field: True target_domain: dataset: ml-100k data_path: 'dataset/' seq_separator: "," USER_ID_FIELD: user_id ITEM_ID_FIELD: item_id RATING_FIELD: rating TIME_FIELD: timestamp NEG_PREFIX: neg_ LABEL_FIELD: label threshold: rating: 4 load_col: inter: [user_id, item_id, rating] user_inter_num_interval: "[5,inf)" item_inter_num_interval: "[5,inf)" val_interval: rating: "[3,inf)" drop_filter_field: True
2.python 文件:
import argparse from recbole_cdr.quick_start import run_recbole_cdr if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', '-m', type=str, default='DTCDR', help='name of models') parser.add_argument('--config_files', type=str, default='sample.yaml', help='config files') args, _ = parser.parse_known_args() config_file_list = args.config_files.strip().split(' ') if args.config_files else None print(config_file_list) run_recbole_cdr(model=args.model, config_file_list=config_file_list)
embedding_size: 64 base_model: NeuMF learning_rate: 0.0005 mlp_hidden_size: [64, 64] dropout_prob: 0.3 alpha: 0.3
感谢您的帮助!
The text was updated successfully, but these errors were encountered:
@AML-CityU 您好,感谢您对RecBole-CDR的关注! 需要向您确认几点信息:
Sorry, something went wrong.
Wicknight
No branches or pull requests
您好,我是一名使用者,想用recbole-cdr进行跨域CTR任务,需要AUC与logloss做输出,但发现这两个指标输出效果很差。希望寻求参数/模型调整建议。
测试使用的是代码recbole_cdr/dataset_example下的两个数据集(source:ml-1m, target: ml-100k),使用theshold=4过滤标签。不论基础模型是哪个,输出的AUC都在0.6左右。但相同的target数据集使用其他地方的单域模型代码(测试用的deepfm)都能达到AUC>0.75。
我对一些超参数进行过调整(如xx_xx_num_interval, 学习率,valid_metric,甚至theshold=3等),但没有明显提升效果。
下面是我使用的recbole-cdr模型参数,请参考:
1.参数文件sample.yaml:
2.python 文件:
感谢您的帮助!
The text was updated successfully, but these errors were encountered: