New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tracking issue for the `x86-interrupt` calling convention #40180

Open
phil-opp opened this Issue Mar 1, 2017 · 3 comments

Comments

Projects
None yet
5 participants
@phil-opp
Contributor

phil-opp commented Mar 1, 2017

Overview

Tracking issue for the x86-interrupt calling convention, which was added in PR #39832. The feature gate name is abi_x86_interrupt. This feature will not be considered for stabilization without an RFC.

The x86-interrupt calling convention can be used for defining interrupt handlers on 32-bit and 64-bit x86 targets. The compiler then uses iret instead of ret for returning and ensures that all registers are restored to their original values.

Usage

extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}

for interrupts and exceptions without error code and

extern "x86-interrupt" fn handler_with_err_code(stack_frame: &ExceptionStackFrame,
                                                error_code: u64) {…}

for exceptions that push an error code (e.g., page faults or general protection faults). The programmer must ensure that the correct version is used for each interrupt.

For more details see the LLVM PR, and the corresponding proposal.

Known issues

  • LLVM doesn't preserve MMX and x87 floating point registers across interrupts. This issue was reported in bug 26411.

64-bit

  • The x86_64 automatically aligns the stack on a 16-byte boundary when an interrupts occurs in 64-bit mode. However, the CPU pushes an 8-byte error code for some exceptions, which destroys the 16-byte alignment. At the moment, LLVM doesn't handle this case correctly and always assumes a 16-byte alignment. This leads to alignment issues on targets with SSE support, since LLVM uses misaligned movaps instructions for saving the xmm registers. This issue is tracked as bug 26413. A fix for this problem is submitted in D30049 and merged in rL299383, but not yet backported to Rust's LLVM fork.

  • LLVM always tries to backup the xmm registers on 64-bit platforms even if the target doesn't support SSE. This leads to invalid opcode exceptions whenever an interrupt handler is invoked. The fix was merged to LLVM trunk in rL295347. Backported in rust-lang/llvm#63.

32-bit

  • In 32-bit mode, the CPU performs no stack alignment on interrupts. Thus, the interrupt handler should perform a dynamic stack alignment (i.e. and esp, 16). However, LLVM doesn't do that at the moment, which might lead to alignment errors, especially for targets with SSE support. This issue is tracked in bug 26477.

@brson brson added the B-unstable label Mar 1, 2017

phil-opp added a commit to phil-opp/rust that referenced this issue Mar 1, 2017

Add support for x86-interrupt calling convention
Tracking issue: rust-lang#40180

This calling convention can be used for definining interrupt handlers on
32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of
`ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```
extern "x86-interrupt" fn page_fault_handler(stack_frame: &ExceptionStackFrame,
                                             error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general
protection faults). The programmer must ensure that the correct version
is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

bors added a commit that referenced this issue Mar 2, 2017

Auto merge of #39832 - phil-opp:x86-interrupt-calling-convention, r=n…
…agisa

Add support for the x86-interrupt calling convention

## Overview

This calling convention can be used for definining interrupt handlers on 32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of `ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```rust
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```rust
extern "x86-interrupt" fn handler_with_err_code(stack_frame: &ExceptionStackFrame,
                                                error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general protection faults). The programmer must ensure that the correct version is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

## Compared to naked functions

It is also possible to implement interrupt handlers on x86 through [naked functions](https://github.com/rust-lang/rfcs/blob/master/text/1201-naked-fns.md). In fact, almost all existing Rust OS projects for x86 use naked functions for this, including [Redox](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147), [IntermezzOS](https://github.com/intermezzOS/kernel/blob/f959cc18c78b1ba153f3ff7039d9ecc07f397628/interrupts/src/lib.rs#L28-L72), and [blog_os](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L49-L64). So support for the `x86-interrupt` calling convention isn't absolutely needed.

However, it has a number of benefits to naked functions:

- **No inline assembly needed**: [Inline assembly](https://doc.rust-lang.org/book/inline-assembly.html) is highly unstable and dangerous. It's pretty easy to mess things up. Also, it uses an arcane syntax and requires that the programmer knows x86 assembly.
- **Higher performance**: A naked wrapper function always saves _all_ registers before calling the Rust function. This isn't needed for a compiler supported calling convention, since the compiler knows which registers are clobbered by the interrupt handler. Thus, only these registers need to be saved and restored.
- **Safer interfaces**: We can write a `set_handler` function that takes a `extern "x86-interrupt" fn(&ExceptionStackFrame)` and the compiler ensures that we always use the right function type for all handler functions. This isn't possible with the `#[naked]` attribute.
- **More convenient**: Instead of writing [tons of assembly boilerplate](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147) and desperately trying to improve things [through macros](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L17-L92), we can just write [code like this](https://github.com/phil-opp/blog_os/blob/e6a61f9507a4c4fef6fb4e3474bc596391bc97d2/src/interrupts/mod.rs#L85-L89).
- **Naked functions are unreliable**: It is allowed to use Rust code inside a naked function, which sometimes works and sometimes not. For example, [calling a function](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L132) through Rust code seems to work fine without function prologue, but [code declaring a variable](https://is.gd/NQYXqE) silently adds a prologue even though the function is naked (look at the generated assembly, there is a `movl` instruction before the `nop`).

## Known issues

Unfortunately, the implementation of the `x86-interrupt` calling convention in LLVM has some issues that make it unsuitable for 64-bit kernels at the moment:

- LLVM always tries to backup the `xmm` registers on 64-bit platforms even if the target doesn't support SSE. This leads to invalid opcode exceptions whenever an interrupt handler is invoked. I submitted a fix to LLVM in [D29959](https://reviews.llvm.org/D29959). The fix is really small (<10 lines), so maybe we could backport it to [Rust's LLVM fork](https://github.com/rust-lang/llvm)?. **Edit**: The fix was merged to LLVM trunk in [rL295347](https://reviews.llvm.org/rL295347). Backported in rust-lang/llvm#63.

- On targets with SSE support, LLVM uses the `movaps` instruction for saving the `xmm` registers, which requires an alignment of 16. For handlers with error codes, however, the stack alignment is only 8, so a alignment exception occurs. This issue is tracked in [bug 26413](https://bugs.llvm.org/show_bug.cgi?id=26413). ~~Unfortunately, I don't know enough about LLVM to fix this.~~ **Edit**: Fix submitted in [D30049](https://reviews.llvm.org/D30049).

## About this PR

This PR adds experimental support for this calling convention under the `abi_x86_interrupt` feature gate. The implementation is very similar to #38465 and was surprisingly simple :).

There is no accepted RFC for this change. In fact, the [RFC for interrupt calling convention](rust-lang/rfcs#1275) from 2015 was closed in favor of naked functions. However, the reactions to the recent [PR](#38465) for a MSP430 interrupt calling convention were [in favor of experimental interrupt ABIs](#38465 (comment)).

## Todo

- [x] Add compile-fail tests for the feature gate.
- [x] Create tracking issue for the `abi_x86_interrupt` feature (and link it in code). **Edit**: Tracking issue: #40180
- [x] Backport [rL295347](https://reviews.llvm.org/rL295347) to Rust's LLVM fork. **Edit**: Done in rust-lang/llvm#63

## CC

@tari @steveklabnik @jackpot51 @ticki @hawkw @thepowersgang, you might be interested in this.

phil-opp added a commit to phil-opp/rust that referenced this issue Mar 2, 2017

Add support for x86-interrupt calling convention
Tracking issue: rust-lang#40180

This calling convention can be used for definining interrupt handlers on
32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of
`ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```
extern "x86-interrupt" fn page_fault_handler(stack_frame: &ExceptionStackFrame,
                                             error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general
protection faults). The programmer must ensure that the correct version
is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

bors added a commit that referenced this issue Mar 2, 2017

Auto merge of #39832 - phil-opp:x86-interrupt-calling-convention, r=n…
…agisa

Add support for the x86-interrupt calling convention

## Overview

This calling convention can be used for definining interrupt handlers on 32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of `ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```rust
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```rust
extern "x86-interrupt" fn handler_with_err_code(stack_frame: &ExceptionStackFrame,
                                                error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general protection faults). The programmer must ensure that the correct version is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

## Compared to naked functions

It is also possible to implement interrupt handlers on x86 through [naked functions](https://github.com/rust-lang/rfcs/blob/master/text/1201-naked-fns.md). In fact, almost all existing Rust OS projects for x86 use naked functions for this, including [Redox](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147), [IntermezzOS](https://github.com/intermezzOS/kernel/blob/f959cc18c78b1ba153f3ff7039d9ecc07f397628/interrupts/src/lib.rs#L28-L72), and [blog_os](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L49-L64). So support for the `x86-interrupt` calling convention isn't absolutely needed.

However, it has a number of benefits to naked functions:

- **No inline assembly needed**: [Inline assembly](https://doc.rust-lang.org/book/inline-assembly.html) is highly unstable and dangerous. It's pretty easy to mess things up. Also, it uses an arcane syntax and requires that the programmer knows x86 assembly.
- **Higher performance**: A naked wrapper function always saves _all_ registers before calling the Rust function. This isn't needed for a compiler supported calling convention, since the compiler knows which registers are clobbered by the interrupt handler. Thus, only these registers need to be saved and restored.
- **Safer interfaces**: We can write a `set_handler` function that takes a `extern "x86-interrupt" fn(&ExceptionStackFrame)` and the compiler ensures that we always use the right function type for all handler functions. This isn't possible with the `#[naked]` attribute.
- **More convenient**: Instead of writing [tons of assembly boilerplate](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147) and desperately trying to improve things [through macros](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L17-L92), we can just write [code like this](https://github.com/phil-opp/blog_os/blob/e6a61f9507a4c4fef6fb4e3474bc596391bc97d2/src/interrupts/mod.rs#L85-L89).
- **Naked functions are unreliable**: It is allowed to use Rust code inside a naked function, which sometimes works and sometimes not. For example, [calling a function](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L132) through Rust code seems to work fine without function prologue, but [code declaring a variable](https://is.gd/NQYXqE) silently adds a prologue even though the function is naked (look at the generated assembly, there is a `movl` instruction before the `nop`).

## Known issues

Unfortunately, the implementation of the `x86-interrupt` calling convention in LLVM has some issues that make it unsuitable for 64-bit kernels at the moment:

- LLVM always tries to backup the `xmm` registers on 64-bit platforms even if the target doesn't support SSE. This leads to invalid opcode exceptions whenever an interrupt handler is invoked. I submitted a fix to LLVM in [D29959](https://reviews.llvm.org/D29959). The fix is really small (<10 lines), so maybe we could backport it to [Rust's LLVM fork](https://github.com/rust-lang/llvm)?. **Edit**: The fix was merged to LLVM trunk in [rL295347](https://reviews.llvm.org/rL295347). Backported in rust-lang/llvm#63.

- On targets with SSE support, LLVM uses the `movaps` instruction for saving the `xmm` registers, which requires an alignment of 16. For handlers with error codes, however, the stack alignment is only 8, so a alignment exception occurs. This issue is tracked in [bug 26413](https://bugs.llvm.org/show_bug.cgi?id=26413). ~~Unfortunately, I don't know enough about LLVM to fix this.~~ **Edit**: Fix submitted in [D30049](https://reviews.llvm.org/D30049).

## About this PR

This PR adds experimental support for this calling convention under the `abi_x86_interrupt` feature gate. The implementation is very similar to #38465 and was surprisingly simple :).

There is no accepted RFC for this change. In fact, the [RFC for interrupt calling convention](rust-lang/rfcs#1275) from 2015 was closed in favor of naked functions. However, the reactions to the recent [PR](#38465) for a MSP430 interrupt calling convention were [in favor of experimental interrupt ABIs](#38465 (comment)).

## Todo

- [x] Add compile-fail tests for the feature gate.
- [x] Create tracking issue for the `abi_x86_interrupt` feature (and link it in code). **Edit**: Tracking issue: #40180
- [x] Backport [rL295347](https://reviews.llvm.org/rL295347) to Rust's LLVM fork. **Edit**: Done in rust-lang/llvm#63

## CC

@tari @steveklabnik @jackpot51 @ticki @hawkw @thepowersgang, you might be interested in this.

phil-opp added a commit to phil-opp/rust that referenced this issue Mar 2, 2017

Add support for x86-interrupt calling convention
Tracking issue: rust-lang#40180

This calling convention can be used for definining interrupt handlers on
32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of
`ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```
extern "x86-interrupt" fn page_fault_handler(stack_frame: &ExceptionStackFrame,
                                             error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general
protection faults). The programmer must ensure that the correct version
is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

frewsxcv added a commit to frewsxcv/rust that referenced this issue Mar 2, 2017

Rollup merge of rust-lang#39832 - phil-opp:x86-interrupt-calling-conv…
…ention, r=nagisa

Add support for the x86-interrupt calling convention

This calling convention can be used for definining interrupt handlers on 32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of `ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```rust
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```rust
extern "x86-interrupt" fn handler_with_err_code(stack_frame: &ExceptionStackFrame,
                                                error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general protection faults). The programmer must ensure that the correct version is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

It is also possible to implement interrupt handlers on x86 through [naked functions](https://github.com/rust-lang/rfcs/blob/master/text/1201-naked-fns.md). In fact, almost all existing Rust OS projects for x86 use naked functions for this, including [Redox](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147), [IntermezzOS](https://github.com/intermezzOS/kernel/blob/f959cc18c78b1ba153f3ff7039d9ecc07f397628/interrupts/src/lib.rs#L28-L72), and [blog_os](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L49-L64). So support for the `x86-interrupt` calling convention isn't absolutely needed.

However, it has a number of benefits to naked functions:

- **No inline assembly needed**: [Inline assembly](https://doc.rust-lang.org/book/inline-assembly.html) is highly unstable and dangerous. It's pretty easy to mess things up. Also, it uses an arcane syntax and requires that the programmer knows x86 assembly.
- **Higher performance**: A naked wrapper function always saves _all_ registers before calling the Rust function. This isn't needed for a compiler supported calling convention, since the compiler knows which registers are clobbered by the interrupt handler. Thus, only these registers need to be saved and restored.
- **Safer interfaces**: We can write a `set_handler` function that takes a `extern "x86-interrupt" fn(&ExceptionStackFrame)` and the compiler ensures that we always use the right function type for all handler functions. This isn't possible with the `#[naked]` attribute.
- **More convenient**: Instead of writing [tons of assembly boilerplate](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147) and desperately trying to improve things [through macros](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L17-L92), we can just write [code like this](https://github.com/phil-opp/blog_os/blob/e6a61f9507a4c4fef6fb4e3474bc596391bc97d2/src/interrupts/mod.rs#L85-L89).
- **Naked functions are unreliable**: It is allowed to use Rust code inside a naked function, which sometimes works and sometimes not. For example, [calling a function](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L132) through Rust code seems to work fine without function prologue, but [code declaring a variable](https://is.gd/NQYXqE) silently adds a prologue even though the function is naked (look at the generated assembly, there is a `movl` instruction before the `nop`).

**Edit**: See the [tracking issue](rust-lang#40180) for an updated list of issues.

Unfortunately, the implementation of the `x86-interrupt` calling convention in LLVM has some issues that make it unsuitable for 64-bit kernels at the moment:

- LLVM always tries to backup the `xmm` registers on 64-bit platforms even if the target doesn't support SSE. This leads to invalid opcode exceptions whenever an interrupt handler is invoked. I submitted a fix to LLVM in [D29959](https://reviews.llvm.org/D29959). The fix is really small (<10 lines), so maybe we could backport it to [Rust's LLVM fork](https://github.com/rust-lang/llvm)?. **Edit**: The fix was merged to LLVM trunk in [rL295347](https://reviews.llvm.org/rL295347). Backported in rust-lang/llvm#63.

- On targets with SSE support, LLVM uses the `movaps` instruction for saving the `xmm` registers, which requires an alignment of 16. For handlers with error codes, however, the stack alignment is only 8, so a alignment exception occurs. This issue is tracked in [bug 26413](https://bugs.llvm.org/show_bug.cgi?id=26413). ~~Unfortunately, I don't know enough about LLVM to fix this.~~ **Edit**: Fix submitted in [D30049](https://reviews.llvm.org/D30049).

This PR adds experimental support for this calling convention under the `abi_x86_interrupt` feature gate. The implementation is very similar to rust-lang#38465 and was surprisingly simple :).

There is no accepted RFC for this change. In fact, the [RFC for interrupt calling convention](rust-lang/rfcs#1275) from 2015 was closed in favor of naked functions. However, the reactions to the recent [PR](rust-lang#38465) for a MSP430 interrupt calling convention were [in favor of experimental interrupt ABIs](rust-lang#38465 (comment)).

- [x] Add compile-fail tests for the feature gate.
- [x] Create tracking issue for the `abi_x86_interrupt` feature (and link it in code). **Edit**: Tracking issue: rust-lang#40180
- [x] Backport [rL295347](https://reviews.llvm.org/rL295347) to Rust's LLVM fork. **Edit**: Done in rust-lang/llvm#63

@tari @steveklabnik @jackpot51 @ticki @hawkw @thepowersgang, you might be interested in this.

frewsxcv added a commit to frewsxcv/rust that referenced this issue Mar 2, 2017

Rollup merge of rust-lang#39832 - phil-opp:x86-interrupt-calling-conv…
…ention, r=nagisa

Add support for the x86-interrupt calling convention

This calling convention can be used for definining interrupt handlers on 32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of `ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```rust
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```rust
extern "x86-interrupt" fn handler_with_err_code(stack_frame: &ExceptionStackFrame,
                                                error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general protection faults). The programmer must ensure that the correct version is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

It is also possible to implement interrupt handlers on x86 through [naked functions](https://github.com/rust-lang/rfcs/blob/master/text/1201-naked-fns.md). In fact, almost all existing Rust OS projects for x86 use naked functions for this, including [Redox](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147), [IntermezzOS](https://github.com/intermezzOS/kernel/blob/f959cc18c78b1ba153f3ff7039d9ecc07f397628/interrupts/src/lib.rs#L28-L72), and [blog_os](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L49-L64). So support for the `x86-interrupt` calling convention isn't absolutely needed.

However, it has a number of benefits to naked functions:

- **No inline assembly needed**: [Inline assembly](https://doc.rust-lang.org/book/inline-assembly.html) is highly unstable and dangerous. It's pretty easy to mess things up. Also, it uses an arcane syntax and requires that the programmer knows x86 assembly.
- **Higher performance**: A naked wrapper function always saves _all_ registers before calling the Rust function. This isn't needed for a compiler supported calling convention, since the compiler knows which registers are clobbered by the interrupt handler. Thus, only these registers need to be saved and restored.
- **Safer interfaces**: We can write a `set_handler` function that takes a `extern "x86-interrupt" fn(&ExceptionStackFrame)` and the compiler ensures that we always use the right function type for all handler functions. This isn't possible with the `#[naked]` attribute.
- **More convenient**: Instead of writing [tons of assembly boilerplate](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L109-L147) and desperately trying to improve things [through macros](https://github.com/phil-opp/blog_os/blob/844d739379ffdea6a7ede88365ec6e21a725bbf5/src/interrupts/mod.rs#L17-L92), we can just write [code like this](https://github.com/phil-opp/blog_os/blob/e6a61f9507a4c4fef6fb4e3474bc596391bc97d2/src/interrupts/mod.rs#L85-L89).
- **Naked functions are unreliable**: It is allowed to use Rust code inside a naked function, which sometimes works and sometimes not. For example, [calling a function](https://github.com/redox-os/kernel/blob/b9793deb59c7650f0805dea96adb6b773ad99336/arch/x86_64/src/lib.rs#L132) through Rust code seems to work fine without function prologue, but [code declaring a variable](https://is.gd/NQYXqE) silently adds a prologue even though the function is naked (look at the generated assembly, there is a `movl` instruction before the `nop`).

**Edit**: See the [tracking issue](rust-lang#40180) for an updated list of issues.

Unfortunately, the implementation of the `x86-interrupt` calling convention in LLVM has some issues that make it unsuitable for 64-bit kernels at the moment:

- LLVM always tries to backup the `xmm` registers on 64-bit platforms even if the target doesn't support SSE. This leads to invalid opcode exceptions whenever an interrupt handler is invoked. I submitted a fix to LLVM in [D29959](https://reviews.llvm.org/D29959). The fix is really small (<10 lines), so maybe we could backport it to [Rust's LLVM fork](https://github.com/rust-lang/llvm)?. **Edit**: The fix was merged to LLVM trunk in [rL295347](https://reviews.llvm.org/rL295347). Backported in rust-lang/llvm#63.

- On targets with SSE support, LLVM uses the `movaps` instruction for saving the `xmm` registers, which requires an alignment of 16. For handlers with error codes, however, the stack alignment is only 8, so a alignment exception occurs. This issue is tracked in [bug 26413](https://bugs.llvm.org/show_bug.cgi?id=26413). ~~Unfortunately, I don't know enough about LLVM to fix this.~~ **Edit**: Fix submitted in [D30049](https://reviews.llvm.org/D30049).

This PR adds experimental support for this calling convention under the `abi_x86_interrupt` feature gate. The implementation is very similar to rust-lang#38465 and was surprisingly simple :).

There is no accepted RFC for this change. In fact, the [RFC for interrupt calling convention](rust-lang/rfcs#1275) from 2015 was closed in favor of naked functions. However, the reactions to the recent [PR](rust-lang#38465) for a MSP430 interrupt calling convention were [in favor of experimental interrupt ABIs](rust-lang#38465 (comment)).

- [x] Add compile-fail tests for the feature gate.
- [x] Create tracking issue for the `abi_x86_interrupt` feature (and link it in code). **Edit**: Tracking issue: rust-lang#40180
- [x] Backport [rL295347](https://reviews.llvm.org/rL295347) to Rust's LLVM fork. **Edit**: Done in rust-lang/llvm#63

@tari @steveklabnik @jackpot51 @ticki @hawkw @thepowersgang, you might be interested in this.

jdhorwitz added a commit to jdhorwitz/rust that referenced this issue Mar 4, 2017

Add support for x86-interrupt calling convention
Tracking issue: rust-lang#40180

This calling convention can be used for definining interrupt handlers on
32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of
`ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```
extern "x86-interrupt" fn page_fault_handler(stack_frame: &ExceptionStackFrame,
                                             error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general
protection faults). The programmer must ensure that the correct version
is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html
@rexlunae

This comment has been minimized.

rexlunae commented Mar 30, 2017

If we're going to have an x86-interrupt abi, would it also make sense to have an x86-syscall? Or x86-sysenter?

@kyrias

This comment has been minimized.

Contributor

kyrias commented Apr 17, 2017

(D30049 was merged to LLVM trunk on the 3rd of April, for the record.)

@phil-opp

This comment has been minimized.

Contributor

phil-opp commented Apr 19, 2017

@kyrias Thanks for the hint, I updated the issue text. I'll try to create a backport PR in the next few days.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment