forked from gravitational/teleport
-
Notifications
You must be signed in to change notification settings - Fork 0
/
certs.go
259 lines (226 loc) · 7.83 KB
/
certs.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
Copyright 2016 SPIFFE Authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package utils
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"math/big"
"time"
"github.com/gravitational/trace"
log "github.com/sirupsen/logrus"
)
// ParseSigningKeyStore parses signing key store from PEM encoded key pair
func ParseSigningKeyStorePEM(keyPEM, certPEM string) (*SigningKeyStore, error) {
_, err := ParseCertificatePEM([]byte(certPEM))
if err != nil {
return nil, trace.Wrap(err)
}
key, err := ParsePrivateKeyPEM([]byte(keyPEM))
if err != nil {
return nil, trace.Wrap(err)
}
rsaKey, ok := key.(*rsa.PrivateKey)
if !ok {
return nil, trace.BadParameter("key of type %T is not supported, only RSA keys are supported for signatures")
}
certASN, _ := pem.Decode([]byte(certPEM))
if certASN == nil {
return nil, trace.BadParameter("expected PEM-encoded block")
}
return &SigningKeyStore{privateKey: rsaKey, cert: certASN.Bytes}, nil
}
// SigningKeyStore is used to sign using X509 digital signatures
type SigningKeyStore struct {
privateKey *rsa.PrivateKey
cert []byte
}
func (ks *SigningKeyStore) GetKeyPair() (*rsa.PrivateKey, []byte, error) {
return ks.privateKey, ks.cert, nil
}
// GenerateSelfSignedSigningCert generates self-signed certificate used for digital signatures
func GenerateSelfSignedSigningCert(entity pkix.Name, dnsNames []string, ttl time.Duration) ([]byte, []byte, error) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
return nil, nil, trace.Wrap(err)
}
// to account for clock skew
notBefore := time.Now().Add(-2 * time.Minute)
notAfter := notBefore.Add(ttl)
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
if err != nil {
return nil, nil, trace.Wrap(err)
}
template := x509.Certificate{
SerialNumber: serialNumber,
Issuer: entity,
Subject: entity,
NotBefore: notBefore,
NotAfter: notAfter,
KeyUsage: x509.KeyUsageDigitalSignature,
BasicConstraintsValid: true,
DNSNames: dnsNames,
}
derBytes, err := x509.CreateCertificate(rand.Reader, &template, &template, &priv.PublicKey, priv)
if err != nil {
return nil, nil, trace.Wrap(err)
}
keyPEM := pem.EncodeToMemory(&pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(priv)})
certPEM := pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
return keyPEM, certPEM, nil
}
// ParseCertificateRequestPEM parses PEM-encoded certificate signing request
func ParseCertificateRequestPEM(bytes []byte) (*x509.CertificateRequest, error) {
block, _ := pem.Decode(bytes)
if block == nil {
return nil, trace.BadParameter("expected PEM-encoded block")
}
csr, err := x509.ParseCertificateRequest(block.Bytes)
if err != nil {
return nil, trace.BadParameter(err.Error())
}
return csr, nil
}
// ParseCertificatePEM parses PEM-encoded certificate
func ParseCertificatePEM(bytes []byte) (*x509.Certificate, error) {
block, _ := pem.Decode(bytes)
if block == nil {
return nil, trace.BadParameter("expected PEM-encoded block")
}
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
return nil, trace.BadParameter(err.Error())
}
return cert, nil
}
// ParsePrivateKeyPEM parses PEM-encoded private key
func ParsePrivateKeyPEM(bytes []byte) (crypto.Signer, error) {
block, _ := pem.Decode(bytes)
if block == nil {
return nil, trace.BadParameter("expected PEM-encoded block")
}
return ParsePrivateKeyDER(block.Bytes)
}
// ParsePrivateKeyDER parses unencrypted DER-encoded private key
func ParsePrivateKeyDER(der []byte) (crypto.Signer, error) {
generalKey, err := x509.ParsePKCS8PrivateKey(der)
if err != nil {
generalKey, err = x509.ParsePKCS1PrivateKey(der)
if err != nil {
generalKey, err = x509.ParseECPrivateKey(der)
if err != nil {
log.Errorf("failed to parse key: %v", err)
return nil, trace.BadParameter("failed parsing private key")
}
}
}
switch generalKey.(type) {
case *rsa.PrivateKey:
return generalKey.(*rsa.PrivateKey), nil
case *ecdsa.PrivateKey:
return generalKey.(*ecdsa.PrivateKey), nil
}
return nil, trace.BadParameter("unsupported private key type")
}
// VerifyCertificateChain reads in chain of certificates and makes sure the
// chain from leaf to root is valid. This ensures that clients (web browsers
// and CLI) won't have problem validating the chain.
func VerifyCertificateChain(certificateChain []*x509.Certificate) error {
// chain needs at least one certificate
if len(certificateChain) == 0 {
return trace.BadParameter("need at least one certificate in chain")
}
// extract leaf of certificate chain. it is safe to index into the chain here
// because readCertificateChain always returns a valid chain with at least
// one certificate.
leaf := certificateChain[0]
// extract intermediate certificate chain.
intermediates := x509.NewCertPool()
if len(certificateChain) > 1 {
for _, v := range certificateChain[1:len(certificateChain)] {
intermediates.AddCert(v)
}
}
// verify certificate chain, roots is nil which will cause us to to use the
// system roots.
opts := x509.VerifyOptions{
Intermediates: intermediates,
}
_, err := leaf.Verify(opts)
if err != nil {
return trace.Wrap(err)
}
return nil
}
// IsSelfSigned checks if the certificate is a self-signed certificate. To
// check if a certificate is self signed, we make sure that only one
// certificate is in the chain and that the SubjectKeyId and AuthorityKeyId
// match.
//
// From RFC5280: https://tools.ietf.org/html/rfc5280#section-4.2.1.1
//
// The signature on a self-signed certificate is generated with the private
// key associated with the certificate's subject public key. (This
// proves that the issuer possesses both the public and private keys.)
// In this case, the subject and authority key identifiers would be
// identical, but only the subject key identifier is needed for
// certification path building.
//
func IsSelfSigned(certificateChain []*x509.Certificate) bool {
if len(certificateChain) != 1 {
return false
}
if bytes.Compare(certificateChain[0].SubjectKeyId, certificateChain[0].AuthorityKeyId) != 0 {
return false
}
return true
}
// ReadCertificateChain parses PEM encoded bytes that can contain one or
// multiple certificates and returns a slice of x509.Certificate.
func ReadCertificateChain(certificateChainBytes []byte) ([]*x509.Certificate, error) {
// build the certificate chain next
var certificateBlock *pem.Block
var remainingBytes []byte = bytes.TrimSpace(certificateChainBytes)
var certificateChain [][]byte
for {
certificateBlock, remainingBytes = pem.Decode(remainingBytes)
if certificateBlock == nil || certificateBlock.Type != pemBlockCertificate {
return nil, trace.NotFound("no PEM data found")
}
certificateChain = append(certificateChain, certificateBlock.Bytes)
if len(remainingBytes) == 0 {
break
}
}
// build a concatenated certificate chain
var buf bytes.Buffer
for _, cc := range certificateChain {
_, err := buf.Write(cc)
if err != nil {
return nil, trace.Wrap(err)
}
}
// parse the chain and get a slice of x509.Certificates.
x509Chain, err := x509.ParseCertificates(buf.Bytes())
if err != nil {
return nil, trace.Wrap(err)
}
return x509Chain, nil
}
const pemBlockCertificate = "CERTIFICATE"