Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] Cannot speedup DMControl suite. #201

Closed
3 tasks done
sweetice opened this issue Oct 10, 2022 · 1 comment · Fixed by #206, #208, #209 or #210
Closed
3 tasks done

[BUG] Cannot speedup DMControl suite. #201

sweetice opened this issue Oct 10, 2022 · 1 comment · Fixed by #206, #208, #209 or #210
Assignees
Labels
bug Something isn't working

Comments

@sweetice
Copy link

Describe the bug

I test the dmcontrol suite of envpool using the official code.

(base) mzy813@slurm-bm-23:/mnt/qb/work/maghsudi/mzy813/code/test_script$ python test_envpool.py
/mnt/qb/work/maghsudi/mzy813/anaconda3/lib/python3.9/site-packages/glfw/__init__.py:912: GLFWError: (65544) b'X11: The DISPLAY environment variable is missing'
  warnings.warn(message, GLFWError)
Namespace(domain='cheetah', task='run', total_step=200000, seed=0)
100%|█████████████████████████████████████████████████████████████████████████████████████| 200000/200000 [00:14<00:00, 14148.00it/s]
FPS(dmc) = 14132.27
100%|██████████████████████████████████████████████████████████████████████████████████████| 200000/200000 [00:29<00:00, 6761.19it/s]
FPS(envpool) = 6761.02
EnvPool Speedup: 0.48x
(base) mzy813@slurm-bm-23:/mnt/qb/work/maghsudi/mzy813/code/test_script$ MUJOCO_GL=egl python test_envpool.py
Namespace(domain='cheetah', task='run', total_step=200000, seed=0)
100%|█████████████████████████████████████████████████████████████████████████████████████| 200000/200000 [00:14<00:00, 14249.50it/s]
FPS(dmc) = 14226.82
100%|██████████████████████████████████████████████████████████████████████████████████████| 200000/200000 [00:29<00:00, 6707.58it/s]
FPS(envpool) = 6707.47
EnvPool Speedup: 0.47x

It seems that the envpool cannot speed up dmcontrol.

To Reproduce

The link of code

Expected behavior

Envpool can have an accelerating effect.

Screenshots

If applicable, add screenshots to help explain your problem.

System info

Describe the characteristic of your environment:

  • Describe how the library was installed (pip, source, ...)
pip install envpool
  • Python version
    Python 3.9.12 (main, Apr 5 2022, 06:56:58)
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                72
On-line CPU(s) list:   0-71
Thread(s) per core:    2
Core(s) per socket:    18
Socket(s):             2
NUMA node(s):          2
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 85
Model name:            Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
Stepping:              7
CPU MHz:               3299.829
CPU max MHz:           3900.0000
CPU min MHz:           1000.0000
BogoMIPS:              5200.00
Virtualization:        VT-x
L1d cache:             32K
L1i cache:             32K
L2 cache:              1024K
L3 cache:              25344K
NUMA node0 CPU(s):     0-17,36-53
NUMA node1 CPU(s):     18-35,54-71
  • Versions of any other relevant libraries
(base) mzy813@slurm-bm-23:/mnt/qb/work/maghsudi/mzy813/code/test_script$ cat /proc/version
Linux version 3.10.0-1160.76.1.el7.x86_64 (mockbuild@kbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC) ) #1 SMP Wed Aug 10 16:21:17 UTC 2022
Python 3.9.12 (main, Apr  5 2022, 06:56:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import envpool, numpy, sys
l.__version__, numpy.__version__, sys.version, sys.platform)

>>> print(envpool.__version__, numpy.__version__, sys.version, sys.platform)
0.6.4 1.21.5 3.9.12 (main, Apr  5 2022, 06:56:58)
[GCC 7.5.0] linux

Additional context

nvidia-smi

(base) mzy813@slurm-bm-23:/mnt/qb/work/maghsudi/mzy813/code/test_script$ nvidia-smi
Mon Oct 10 10:06:09 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.65.01    Driver Version: 515.65.01    CUDA Version: 11.7     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:DA:00.0 Off |                  N/A |
|  0%   25C    P8    15W / 250W |      1MiB / 11264MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Reason and Possible fixes

pass

Checklist

  • I have checked that there is no similar issue in the repo (required)
  • I have read the documentation (required)
  • I have provided a minimal working example to reproduce the bug (required)
@Trinkle23897
Copy link
Collaborator

It's because we ran benchmark result before Aug 5 -- where dm people applied this optimization to dmc google-deepmind/dm_control@ac6d2cd

Will figure out the bottleneck soon, thanks for reporting this issue!

@Trinkle23897 Trinkle23897 added the bug Something isn't working label Oct 10, 2022
@Trinkle23897 Trinkle23897 linked a pull request Oct 24, 2022 that will close this issue
15 tasks
@Trinkle23897 Trinkle23897 reopened this Oct 25, 2022
@Trinkle23897 Trinkle23897 linked a pull request Oct 26, 2022 that will close this issue
13 tasks
This was linked to pull requests Oct 26, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
3 participants