-
Notifications
You must be signed in to change notification settings - Fork 151
/
derived.rs
953 lines (828 loc) · 30 KB
/
derived.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
use crate::plumbing::CycleDetected;
use crate::plumbing::QueryDescriptor;
use crate::plumbing::QueryFunction;
use crate::plumbing::QueryStorageMassOps;
use crate::plumbing::QueryStorageOps;
use crate::plumbing::UncheckedMutQueryStorageOps;
use crate::runtime::ChangedAt;
use crate::runtime::FxIndexSet;
use crate::runtime::Revision;
use crate::runtime::Runtime;
use crate::runtime::RuntimeId;
use crate::runtime::StampedValue;
use crate::Database;
use crate::SweepStrategy;
use log::{debug, info};
use parking_lot::Mutex;
use parking_lot::{RwLock, RwLockUpgradableReadGuard};
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
use std::marker::PhantomData;
use std::ops::Deref;
use std::sync::mpsc::{self, Receiver, Sender};
use std::sync::Arc;
/// Memoized queries store the result plus a list of the other queries
/// that they invoked. This means we can avoid recomputing them when
/// none of those inputs have changed.
pub type MemoizedStorage<DB, Q> = DerivedStorage<DB, Q, AlwaysMemoizeValue>;
/// "Dependency" queries just track their dependencies and not the
/// actual value (which they produce on demand). This lessens the
/// storage requirements.
pub type DependencyStorage<DB, Q> = DerivedStorage<DB, Q, NeverMemoizeValue>;
/// "Dependency" queries just track their dependencies and not the
/// actual value (which they produce on demand). This lessens the
/// storage requirements.
pub type VolatileStorage<DB, Q> = DerivedStorage<DB, Q, VolatileValue>;
/// Handles storage where the value is 'derived' by executing a
/// function (in contrast to "inputs").
pub struct DerivedStorage<DB, Q, MP>
where
Q: QueryFunction<DB>,
DB: Database,
MP: MemoizationPolicy<DB, Q>,
{
map: RwLock<FxHashMap<Q::Key, QueryState<DB, Q>>>,
policy: PhantomData<MP>,
}
pub trait MemoizationPolicy<DB, Q>
where
Q: QueryFunction<DB>,
DB: Database,
{
fn should_memoize_value(key: &Q::Key) -> bool;
fn memoized_value_eq(old_value: &Q::Value, new_value: &Q::Value) -> bool;
fn should_track_inputs(key: &Q::Key) -> bool;
}
pub enum AlwaysMemoizeValue {}
impl<DB, Q> MemoizationPolicy<DB, Q> for AlwaysMemoizeValue
where
Q: QueryFunction<DB>,
Q::Value: Eq,
DB: Database,
{
fn should_memoize_value(_key: &Q::Key) -> bool {
true
}
fn memoized_value_eq(old_value: &Q::Value, new_value: &Q::Value) -> bool {
old_value == new_value
}
fn should_track_inputs(_key: &Q::Key) -> bool {
true
}
}
pub enum NeverMemoizeValue {}
impl<DB, Q> MemoizationPolicy<DB, Q> for NeverMemoizeValue
where
Q: QueryFunction<DB>,
DB: Database,
{
fn should_memoize_value(_key: &Q::Key) -> bool {
false
}
fn memoized_value_eq(_old_value: &Q::Value, _new_value: &Q::Value) -> bool {
panic!("cannot reach since we never memoize")
}
fn should_track_inputs(_key: &Q::Key) -> bool {
true
}
}
pub enum VolatileValue {}
impl<DB, Q> MemoizationPolicy<DB, Q> for VolatileValue
where
Q: QueryFunction<DB>,
DB: Database,
{
fn should_memoize_value(_key: &Q::Key) -> bool {
// Why memoize? Well, if the "volatile" value really is
// constantly changing, we still want to capture its value
// until the next revision is triggered and ensure it doesn't
// change -- otherwise the system gets into an inconsistent
// state where the same query reports back different values.
true
}
fn memoized_value_eq(_old_value: &Q::Value, _new_value: &Q::Value) -> bool {
false
}
fn should_track_inputs(_key: &Q::Key) -> bool {
false
}
}
/// Defines the "current state" of query's memoized results.
enum QueryState<DB, Q>
where
Q: QueryFunction<DB>,
DB: Database,
{
/// The runtime with the given id is currently computing the
/// result of this query; if we see this value in the table, it
/// indeeds a cycle.
InProgress {
id: RuntimeId,
waiting: Mutex<SmallVec<[Sender<StampedValue<Q::Value>>; 2]>>,
},
/// We have computed the query already, and here is the result.
Memoized(Memo<DB, Q>),
}
impl<DB, Q> QueryState<DB, Q>
where
Q: QueryFunction<DB>,
DB: Database,
{
fn in_progress(id: RuntimeId) -> Self {
QueryState::InProgress {
id,
waiting: Default::default(),
}
}
}
struct Memo<DB, Q>
where
Q: QueryFunction<DB>,
DB: Database,
{
/// The result of the query, if we decide to memoize it.
value: Option<Q::Value>,
/// Last revision when this memo was verified (if there are
/// untracked inputs, this will also be when the memo was
/// created).
verified_at: Revision,
/// Last revision when the memoized value was observed to change.
changed_at: Revision,
/// The inputs that went into our query, if we are tracking them.
inputs: MemoInputs<DB>,
}
/// An insertion-order-preserving set of queries. Used to track the
/// inputs accessed during query execution.
pub(crate) enum MemoInputs<DB: Database> {
// No inputs
Constant,
// Non-empty set of inputs fully known
Tracked {
inputs: Arc<FxIndexSet<DB::QueryDescriptor>>,
},
// Unknown quantity of inputs
Untracked,
}
impl<DB: Database> MemoInputs<DB> {
fn is_constant(&self) -> bool {
if let MemoInputs::Constant = self {
true
} else {
false
}
}
}
impl<DB: Database> std::fmt::Debug for MemoInputs<DB> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
MemoInputs::Constant => fmt.debug_struct("Constant").finish(),
MemoInputs::Tracked { inputs } => {
fmt.debug_struct("Tracked").field("inputs", inputs).finish()
}
MemoInputs::Untracked => fmt.debug_struct("Untracked").finish(),
}
}
}
impl<DB, Q, MP> Default for DerivedStorage<DB, Q, MP>
where
Q: QueryFunction<DB>,
DB: Database,
MP: MemoizationPolicy<DB, Q>,
{
fn default() -> Self {
DerivedStorage {
map: RwLock::new(FxHashMap::default()),
policy: PhantomData,
}
}
}
/// Return value of `probe` helper.
enum ProbeState<V, G> {
UpToDate(Result<V, CycleDetected>),
StaleOrAbsent(G),
}
impl<DB, Q, MP> DerivedStorage<DB, Q, MP>
where
Q: QueryFunction<DB>,
DB: Database,
MP: MemoizationPolicy<DB, Q>,
{
fn read(
&self,
db: &DB,
key: &Q::Key,
descriptor: &DB::QueryDescriptor,
) -> Result<StampedValue<Q::Value>, CycleDetected> {
let runtime = db.salsa_runtime();
let _read_lock = runtime.start_query();
let revision_now = runtime.current_revision();
info!(
"{:?}({:?}): invoked at {:?}",
Q::default(),
key,
revision_now,
);
// First, do a check with a read-lock.
match self.probe(self.map.read(), runtime, revision_now, descriptor, key) {
ProbeState::UpToDate(v) => return v,
ProbeState::StaleOrAbsent(_guard) => (),
}
self.read_upgrade(db, key, descriptor, revision_now)
}
/// Second phase of a read operation: acquires an upgradable-read
/// and -- if needed -- validates whether inputs have changed,
/// recomputes value, etc. This is invoked after our initial probe
/// shows a potentially out of date value.
fn read_upgrade(
&self,
db: &DB,
key: &Q::Key,
descriptor: &DB::QueryDescriptor,
revision_now: Revision,
) -> Result<StampedValue<Q::Value>, CycleDetected> {
let runtime = db.salsa_runtime();
// Check with an upgradable read to see if there is a value
// already. (This permits other readers but prevents anyone
// else from running `read_upgrade` at the same time.)
let mut old_memo = match self.probe(
self.map.upgradable_read(),
runtime,
revision_now,
descriptor,
key,
) {
ProbeState::UpToDate(v) => return v,
ProbeState::StaleOrAbsent(map) => {
let mut map = RwLockUpgradableReadGuard::upgrade(map);
match map.insert(key.clone(), QueryState::in_progress(runtime.id())) {
Some(QueryState::Memoized(old_memo)) => Some(old_memo),
Some(QueryState::InProgress { .. }) => unreachable!(),
None => None,
}
}
};
let panic_guard = PanicGuard::new(&self.map, key);
// If we have an old-value, it *may* now be stale, since there
// has been a new revision since the last time we checked. So,
// first things first, let's walk over each of our previous
// inputs and check whether they are out of date.
if let Some(memo) = &mut old_memo {
if let Some(value) = memo.validate_memoized_value(db, revision_now) {
info!(
"{:?}({:?}): validated old memoized value",
Q::default(),
key
);
self.overwrite_placeholder(
runtime,
descriptor,
key,
old_memo.unwrap(),
&value,
panic_guard,
);
return Ok(value);
}
}
// Query was not previously executed, or value is potentially
// stale, or value is absent. Let's execute!
let mut result = runtime.execute_query_implementation(descriptor, || {
info!("{:?}({:?}): executing query", Q::default(), key);
if !self.should_track_inputs(key) {
runtime.report_untracked_read();
}
Q::execute(db, key.clone())
});
// We assume that query is side-effect free -- that is, does
// not mutate the "inputs" to the query system. Sanity check
// that assumption here, at least to the best of our ability.
assert_eq!(
runtime.current_revision(),
revision_now,
"revision altered during query execution",
);
// If the new value is equal to the old one, then it didn't
// really change, even if some of its inputs have. So we can
// "backdate" its `changed_at` revision to be the same as the
// old value.
if let Some(old_memo) = &old_memo {
if let Some(old_value) = &old_memo.value {
if MP::memoized_value_eq(&old_value, &result.value) {
assert!(old_memo.changed_at <= result.changed_at.revision);
result.changed_at.revision = old_memo.changed_at;
}
}
}
let new_value = StampedValue {
value: result.value,
changed_at: result.changed_at,
};
{
let value = if self.should_memoize_value(key) {
Some(new_value.value.clone())
} else {
None
};
let inputs = match result.subqueries {
None => MemoInputs::Untracked,
Some(descriptors) => {
// If all things that we read were constants, then
// we don't need to track our inputs: our value
// can never be invalidated.
//
// If OTOH we read at least *some* non-constant
// inputs, then we do track our inputs (even the
// constants), so that if we run the GC, we know
// which constants we looked at.
if descriptors.is_empty() || result.changed_at.is_constant {
MemoInputs::Constant
} else {
MemoInputs::Tracked {
inputs: Arc::new(descriptors),
}
}
}
};
self.overwrite_placeholder(
runtime,
descriptor,
key,
Memo {
value,
changed_at: result.changed_at.revision,
verified_at: revision_now,
inputs,
},
&new_value,
panic_guard,
);
}
Ok(new_value)
}
/// Helper for `read`:
///
/// Invoked with the guard `map` of some lock on `self.map` (read
/// or write) as well as details about the key to look up. Looks
/// in the map to see if we have an up-to-date value or a
/// cycle. Returns a suitable `ProbeState`:
///
/// - `ProbeState::UpToDate(r)` if the table has an up-to-date
/// value (or we blocked on another thread that produced such a value).
/// - `ProbeState::CycleDetected` if this thread is (directly or
/// indirectly) already computing this value.
/// - `ProbeState::BlockedOnOtherThread` if some other thread
/// (which does not depend on us) was already computing this
/// value; caller should re-acquire the lock and try again.
/// - `ProbeState::StaleOrAbsent` if either (a) there is no memo
/// for this key, (b) the memo has no value; or (c) the memo
/// has not been verified at the current revision.
///
/// Note that in all cases **except** for `StaleOrAbsent`, the lock on
/// `map` will have been released.
fn probe<MapGuard>(
&self,
map: MapGuard,
runtime: &Runtime<DB>,
revision_now: Revision,
descriptor: &DB::QueryDescriptor,
key: &Q::Key,
) -> ProbeState<StampedValue<Q::Value>, MapGuard>
where
MapGuard: Deref<Target = FxHashMap<Q::Key, QueryState<DB, Q>>>,
{
match map.get(key) {
Some(QueryState::InProgress { id, waiting }) => {
let other_id = *id;
return match self
.register_with_in_progress_thread(runtime, descriptor, other_id, waiting)
{
Ok(rx) => {
// Release our lock on `self.map`, so other thread
// can complete.
std::mem::drop(map);
let value = rx.recv().unwrap();
ProbeState::UpToDate(Ok(value))
}
Err(CycleDetected) => ProbeState::UpToDate(Err(CycleDetected)),
};
}
Some(QueryState::Memoized(memo)) => {
debug!("{:?}({:?}): found memoized value", Q::default(), key);
if let Some(value) = memo.probe_memoized_value(revision_now) {
info!(
"{:?}({:?}): returning memoized value changed at {:?}",
Q::default(),
key,
value.changed_at
);
return ProbeState::UpToDate(Ok(value));
}
}
None => {}
}
ProbeState::StaleOrAbsent(map)
}
/// Helper:
///
/// When we encounter an `InProgress` indicator, we need to either
/// report a cycle or else register ourselves to be notified when
/// that work completes. This helper does that; it returns a port
/// where you can wait for the final value that wound up being
/// computed (but first drop the lock on the map).
fn register_with_in_progress_thread(
&self,
runtime: &Runtime<DB>,
descriptor: &DB::QueryDescriptor,
other_id: RuntimeId,
waiting: &Mutex<SmallVec<[Sender<StampedValue<Q::Value>>; 2]>>,
) -> Result<Receiver<StampedValue<Q::Value>>, CycleDetected> {
if other_id == runtime.id() {
return Err(CycleDetected);
} else {
if !runtime.try_block_on(descriptor, other_id) {
return Err(CycleDetected);
}
let (tx, rx) = mpsc::channel();
// The reader of this will have to acquire map
// lock, we don't need any particular ordering.
waiting.lock().push(tx);
Ok(rx)
}
}
/// Overwrites the `InProgress` placeholder for `key` that we
/// inserted; if others were blocked, waiting for us to finish,
/// the notify them.
fn overwrite_placeholder(
&self,
runtime: &Runtime<DB>,
descriptor: &DB::QueryDescriptor,
key: &Q::Key,
memo: Memo<DB, Q>,
new_value: &StampedValue<Q::Value>,
panic_guard: PanicGuard<'_, DB, Q>,
) {
// No panic occurred, do not run the panic-guard destructor:
std::mem::forget(panic_guard);
// Overwrite the value, releasing the lock afterwards:
let waiting = {
let mut write = self.map.write();
match write.insert(key.clone(), QueryState::Memoized(memo)) {
Some(QueryState::InProgress { id, waiting }) => {
assert_eq!(id, runtime.id());
let waiting = waiting.into_inner();
if waiting.is_empty() {
// if nobody is waiting, we are done here
return;
}
runtime.unblock_queries_blocked_on_self(descriptor);
waiting
}
_ => panic!("expected in-progress state"),
}
};
for tx in waiting {
tx.send(new_value.clone()).unwrap();
}
}
fn should_memoize_value(&self, key: &Q::Key) -> bool {
MP::should_memoize_value(key)
}
fn should_track_inputs(&self, key: &Q::Key) -> bool {
MP::should_track_inputs(key)
}
}
struct PanicGuard<'db, DB, Q>
where
DB: Database + 'db,
Q: QueryFunction<DB>,
{
map: &'db RwLock<FxHashMap<Q::Key, QueryState<DB, Q>>>,
key: &'db Q::Key,
}
impl<'db, DB, Q> PanicGuard<'db, DB, Q>
where
DB: Database + 'db,
Q: QueryFunction<DB>,
{
fn new(map: &'db RwLock<FxHashMap<Q::Key, QueryState<DB, Q>>>, key: &'db Q::Key) -> Self {
Self { map, key }
}
}
impl<'db, DB, Q> Drop for PanicGuard<'db, DB, Q>
where
DB: Database + 'db,
Q: QueryFunction<DB>,
{
// FIXME(#24) -- handle parallel case
fn drop(&mut self) {
let mut map = self.map.write();
let _ = map.remove(self.key);
}
}
impl<DB, Q, MP> QueryStorageOps<DB, Q> for DerivedStorage<DB, Q, MP>
where
Q: QueryFunction<DB>,
DB: Database,
MP: MemoizationPolicy<DB, Q>,
{
fn try_fetch(
&self,
db: &DB,
key: &Q::Key,
descriptor: &DB::QueryDescriptor,
) -> Result<Q::Value, CycleDetected> {
let StampedValue { value, changed_at } = self.read(db, key, &descriptor)?;
db.salsa_runtime().report_query_read(descriptor, changed_at);
Ok(value)
}
fn maybe_changed_since(
&self,
db: &DB,
revision: Revision,
key: &Q::Key,
descriptor: &DB::QueryDescriptor,
) -> bool {
let runtime = db.salsa_runtime();
let revision_now = runtime.current_revision();
// If a query is in progress, we know that the current
// revision is not changing.
if !runtime.query_in_progress() {
panic!("maybe_changed_since invoked outside of query execution")
}
debug!(
"{:?}({:?})::maybe_changed_since(revision={:?}, revision_now={:?})",
Q::default(),
key,
revision,
revision_now,
);
// Acquire read lock to start. In some of the arms below, we
// drop this explicitly.
let map = self.map.read();
// Look for a memoized value.
let memo = match map.get(key) {
// If somebody depends on us, but we have no map
// entry, that must mean that it was found to be out
// of date and removed.
None => return true,
// This value is being actively recomputed. Wait for
// that thread to finish (assuming it's not dependent
// on us...) and check its associated revision.
Some(QueryState::InProgress { id, waiting }) => {
let other_id = *id;
match self.register_with_in_progress_thread(runtime, descriptor, other_id, waiting)
{
Ok(rx) => {
// Release our lock on `self.map`, so other thread
// can complete.
std::mem::drop(map);
let value = rx.recv().unwrap();
return value.changed_at.changed_since(revision);
}
// Consider a cycle to have changed.
Err(CycleDetected) => return true,
}
}
Some(QueryState::Memoized(memo)) => memo,
};
if memo.verified_at == revision_now {
return memo.changed_at > revision;
}
let inputs = match &memo.inputs {
MemoInputs::Untracked => {
// we don't know the full set of
// inputs, so if there is a new
// revision, we must assume it is
// dirty
return true;
}
MemoInputs::Constant => None,
MemoInputs::Tracked { inputs } => {
// At this point, the value may be dirty (we have
// to check the descriptors). If we have a cached
// value, we'll just fall back to invoking `read`,
// which will do that checking (and a bit more) --
// note that we skip the "pure read" part as we
// already know the result.
assert!(inputs.len() > 0);
if memo.value.is_some() {
std::mem::drop(map);
return match self.read_upgrade(db, key, descriptor, revision_now) {
Ok(v) => v.changed_at.changed_since(revision),
Err(CycleDetected) => true,
};
}
Some(inputs.clone())
}
};
// We have a **tracked set of inputs**
// (found in `descriptors`) that need to
// be validated.
std::mem::drop(map);
// Iterate the inputs and see if any have maybe changed.
let maybe_changed = inputs
.iter()
.flat_map(|inputs| inputs.iter())
.filter(|input| input.maybe_changed_since(db, revision))
.inspect(|input| {
debug!(
"{:?}({:?}): input `{:?}` may have changed",
Q::default(),
key,
input
)
})
.next()
.is_some();
// Either way, we have to update our entry.
{
let mut map = self.map.write();
if maybe_changed {
map.remove(key);
} else {
match map.get_mut(key) {
Some(QueryState::Memoized(memo)) => {
// It is possible that other threads were verifying inputs
// at the same time. They too will be mutating the
// map. However, they can only come to the same conclusion
// that we did.
memo.verified_at = revision_now;
}
None => {
// It's also possible that the garbage
// collector ran in the interim and swept this
// cell right away. That is unfortunate but
// not a big deal, we can still report to the
// caller that we did not change -- this may
// let them re-use stuff. If they re-execute,
// since we have no entry in the map, we'll be
// recomputed.
}
_ => {
panic!("{:?}({:?}) changed state unexpectedly", Q::default(), key,);
}
}
}
}
maybe_changed
}
fn is_constant(&self, _db: &DB, key: &Q::Key) -> bool {
let map_read = self.map.read();
match map_read.get(key) {
None => false,
Some(QueryState::InProgress { .. }) => panic!("query in progress"),
Some(QueryState::Memoized(memo)) => memo.inputs.is_constant(),
}
}
fn keys<C>(&self, _db: &DB) -> C
where
C: std::iter::FromIterator<Q::Key>,
{
let map = self.map.read();
map.keys().cloned().collect()
}
}
impl<DB, Q, MP> QueryStorageMassOps<DB> for DerivedStorage<DB, Q, MP>
where
Q: QueryFunction<DB>,
DB: Database,
MP: MemoizationPolicy<DB, Q>,
{
fn sweep(&self, db: &DB, strategy: SweepStrategy) {
let mut map_write = self.map.write();
let revision_now = db.salsa_runtime().current_revision();
map_write.retain(|key, query_state| {
match query_state {
// Leave stuff that is currently being computed.
QueryState::InProgress { .. } => {
debug!("sweep({:?}({:?})): in-progress", Q::default(), key);
true
}
// Otherwise, keep only if it was used in this revision.
QueryState::Memoized(memo) => {
debug!(
"sweep({:?}({:?})): last verified at {:?}, current revision {:?}",
Q::default(),
key,
memo.verified_at,
revision_now
);
// Since we don't acquire a query lock in this
// method, it *is* possible for the revision to
// change while we are executing. However, it is
// *not* possible for any memos to have been
// written into this table that reflect the new
// revision, since we are holding the write lock
// when we read `revision_now`.
assert!(memo.verified_at <= revision_now);
if !strategy.keep_values {
memo.value = None;
}
memo.verified_at == revision_now
}
}
});
}
}
impl<DB, Q, MP> UncheckedMutQueryStorageOps<DB, Q> for DerivedStorage<DB, Q, MP>
where
Q: QueryFunction<DB>,
DB: Database,
MP: MemoizationPolicy<DB, Q>,
{
fn set_unchecked(&self, db: &DB, key: &Q::Key, value: Q::Value) {
let key = key.clone();
let mut map_write = self.map.write();
let current_revision = db.salsa_runtime().current_revision();
map_write.insert(
key,
QueryState::Memoized(Memo {
value: Some(value),
changed_at: current_revision,
verified_at: current_revision,
inputs: MemoInputs::Tracked {
inputs: Default::default(),
},
}),
);
}
}
impl<DB, Q> Memo<DB, Q>
where
Q: QueryFunction<DB>,
DB: Database,
{
fn validate_memoized_value(
&mut self,
db: &DB,
revision_now: Revision,
) -> Option<StampedValue<Q::Value>> {
// If we don't have a memoized value, nothing to validate.
let value = self.value.as_ref()?;
assert!(self.verified_at != revision_now);
let verified_at = self.verified_at;
let is_constant = match &mut self.inputs {
// We can't validate values that had untracked inputs; just have to
// re-execute.
MemoInputs::Untracked { .. } => {
return None;
}
// Constant: no changed input
MemoInputs::Constant => true,
// Check whether any of our inputs changed since the
// **last point where we were verified** (not since we
// last changed). This is important: if we have
// memoized values, then an input may have changed in
// revision R2, but we found that *our* value was the
// same regardless, so our change date is still
// R1. But our *verification* date will be R2, and we
// are only interested in finding out whether the
// input changed *again*.
MemoInputs::Tracked { inputs } => {
let changed_input = inputs
.iter()
.filter(|input| input.maybe_changed_since(db, verified_at))
.next();
if let Some(input) = changed_input {
debug!(
"{:?}::validate_memoized_value: `{:?}` may have changed",
Q::default(),
input
);
return None;
}
false
}
};
self.verified_at = revision_now;
Some(StampedValue {
changed_at: ChangedAt {
is_constant,
revision: self.changed_at,
},
value: value.clone(),
})
}
/// Returns the memoized value *if* it is known to be update in the given revision.
fn probe_memoized_value(&self, revision_now: Revision) -> Option<StampedValue<Q::Value>> {
let value = self.value.as_ref()?;
debug!(
"probe_memoized_value(verified_at={:?}, changed_at={:?})",
self.verified_at, self.changed_at,
);
if self.verified_at == revision_now {
let is_constant = match self.inputs {
MemoInputs::Constant => true,
_ => false,
};
return Some(StampedValue {
changed_at: ChangedAt {
is_constant,
revision: self.changed_at,
},
value: value.clone(),
});
}
None
}
}