-
Notifications
You must be signed in to change notification settings - Fork 2
/
s09-01-energy-and-work.html
1097 lines (1061 loc) · 85.4 KB
/
s09-01-energy-and-work.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link href="shared/bookhub.css" rel="stylesheet" type="text/css">
<title>Energy and Work</title>
</head>
<body>
<div id=navbar-top class="navbar">
<div class="navbar-part left">
<a href="s09-00-energy-changes-in-chemical-rea.html"><img src="shared/images/batch-left.png"></a> <a href="s09-00-energy-changes-in-chemical-rea.html">Previous Section</a>
</div>
<div class="navbar-part middle">
<a href="index.html"><img src="shared/images/batch-up.png"></a> <a href="index.html">Table of Contents</a>
</div>
<div class="navbar-part right">
<a href="s09-02-enthalpy.html">Next Section</a> <a href="s09-02-enthalpy.html"><img src="shared/images/batch-right.png"></a>
</div>
</div>
<div id="book-content">
<div class="section" id="averill_1.0-ch05_s01" condition="start-of-chunk" version="5.0" lang="en">
<h2 class="title editable block">
<span class="title-prefix">5.1</span> Energy and Work</h2>
<div class="learning_objectives editable block" id="averill_1.0-ch05_s01_n01">
<h3 class="title">Learning Objectives</h3>
<ol class="orderedlist" id="averill_1.0-ch05_s01_l01">
<li>To understand the concept of energy and its various forms.</li>
<li>To know the relationship between energy, work, and heat.</li>
</ol>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_p01">Because energy takes many forms, only some of which can be seen or felt, it is defined by its effect on matter. For example, microwave ovens produce energy to cook food, but we cannot see that energy. In contrast, we can see the energy produced by a light bulb when we switch on a lamp. In this section, we describe the forms of energy and discuss the relationship between energy, heat, and work.</p>
<div class="section" id="averill_1.0-ch05_s01_s01">
<h2 class="title editable block">Forms of Energy</h2>
<p class="para editable block" id="averill_1.0-ch05_s01_s01_p01">The forms of energy include thermal energy, radiant energy, electrical energy, nuclear energy, and chemical energy (<a class="xref" href="#averill_1.0-ch05_s01_s01_f01">Figure 5.1 "Forms of Energy"</a>). <span class="margin_term"><a class="glossterm">Thermal energy</a><span class="glossdef">Energy that results from atomic and molecular motion; the faster the motion, the higher the thermal energy.</span></span> results from atomic and molecular motion; the faster the motion, the greater the thermal energy. The <span class="margin_term"><a class="glossterm">temperature</a><span class="glossdef">A measure of an object’s thermal energy content.</span></span> of an object is a measure of its thermal energy content. <span class="margin_term"><a class="glossterm">Radiant energy</a><span class="glossdef">One of the five forms of energy, radiant energy is carried by light, microwaves, and radio waves (the other forms of energy are thermal, chemical, nuclear, and electrical). Objects left in bright sunshine or exposed to microwaves become warm because much of the radiant energy they absorb is converted to thermal energy.</span></span> is the energy carried by light, microwaves, and radio waves. Objects left in bright sunshine or exposed to microwaves become warm because much of the radiant energy they absorb is converted to thermal energy. <span class="margin_term"><a class="glossterm">Electrical energy</a><span class="glossdef">One of the five forms of energy, electrical energy results from the flow of electrically charged particles. The other four forms of energy are radiant, thermal, chemical, and nuclear.</span></span> results from the flow of electrically charged particles. When the ground and a cloud develop a separation of charge, for example, the resulting flow of electrons from one to the other produces lightning, a natural form of electrical energy. <span class="margin_term"><a class="glossterm">Nuclear energy</a><span class="glossdef">One of the five forms of energy, nuclear energy is stored in the nucleus of an atom. The other four forms of energy are radiant, thermal, chemical, and electrical.</span></span> is stored in the nucleus of an atom, and <span class="margin_term"><a class="glossterm">chemical energy</a><span class="glossdef">One of the five forms of energy, chemical energy is stored within a chemical compound because of a particular arrangement of atoms. The other four forms of energy are radiant, thermal, nuclear, and electrical.</span></span> is stored within a chemical compound because of a particular arrangement of atoms.</p>
<div class="figure large medium-height editable block" id="averill_1.0-ch05_s01_s01_f01">
<p class="title"><span class="title-prefix">Figure 5.1</span> Forms of Energy</p>
<img src="section_09/04b4f98587e12228da011e206633a6b5.jpg">
<p class="para">(a) <em class="emphasis">Thermal energy</em> results from atomic and molecular motion; molten steel at 2000°C has a very high thermal energy content. (b) <em class="emphasis">Radiant energy</em> (e.g., from the sun) is the energy in light, microwaves, and radio waves. (c) Lightning is an example of <em class="emphasis">electrical energy</em>, which is due to the flow of electrically charged particles. (d) <em class="emphasis">Nuclear energy</em> is released when particles in the nucleus of the atom are rearranged. (e) <em class="emphasis">Chemical energy</em> results from the particular arrangement of atoms in a chemical compound; the heat and light produced in this reaction are due to energy released during the breaking and reforming of chemical bonds.</p>
</div>
<p class="para block" id="averill_1.0-ch05_s01_s01_p02">Electrical energy, nuclear energy, and chemical energy are different forms of <span class="margin_term"><a class="glossterm">potential energy (<em class="emphasis bolditalic">PE</em>)</a><span class="glossdef">Energy stored in an object because of its relative position or orientation.</span></span>, which is energy stored in an object because of the relative positions or orientations of its components. A brick lying on the windowsill of a 10th-floor office has a great deal of potential energy, but until its position changes by falling, the energy is contained. In contrast, <span class="margin_term"><a class="glossterm">kinetic energy (<em class="emphasis">KE</em>)</a><span class="glossdef">Energy due to the motion of an object: <span class="inlineequation"><math xml:id="averill_1.0-ch05_m001" display="inline"><semantics><mrow><mi>K</mi><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><msup><mi>v</mi><mtext>2</mtext></msup><mtext>,</mtext></mrow></semantics></math></span> where <span class="inlineequation"><math xml:id="averill_1.0-ch05_m002" display="inline"><semantics><mi>m</mi></semantics></math></span> is the mass of the object and <span class="inlineequation"><math xml:id="averill_1.0-ch05_m003" display="inline"><semantics><mi>v</mi></semantics></math></span> is its velocity.</span></span> is energy due to the <em class="emphasis">motion</em> of an object. When the brick falls, its potential energy is transformed to kinetic energy, which is then transferred to the object on the ground that it strikes. The electrostatic attraction between oppositely charged particles is a form of potential energy, which is converted to kinetic energy when the charged particles move toward each other.</p>
<p class="para editable block" id="averill_1.0-ch05_s01_s01_p03">Energy can be converted from one form to another (<a class="xref" href="#averill_1.0-ch05_s01_s01_f02">Figure 5.2 "Interconversion of Forms of Energy"</a>) or, as we saw with the brick, transferred from one object to another. For example, when you climb a ladder to a high diving board, your body uses chemical energy produced by the combustion of organic molecules. As you climb, the chemical energy is converted to <em class="emphasis">mechanical work</em> to overcome the force of gravity. When you stand on the end of the diving board, your potential energy is greater than it was before you climbed the ladder: the greater the distance from the water, the greater the potential energy. When you then dive into the water, your potential energy is converted to kinetic energy as you fall, and when you hit the surface, some of that energy is transferred to the water, causing it to splash into the air. Chemical energy can also be converted to radiant energy; one common example is the light emitted by fireflies, which is produced from a chemical reaction.</p>
<div class="figure large medium-height editable block" id="averill_1.0-ch05_s01_s01_f02">
<p class="title"><span class="title-prefix">Figure 5.2</span> Interconversion of Forms of Energy</p>
<img src="section_09/a0d22f5e75d45b6d3a8e174c7fd1078b.jpg">
<p class="para">When a swimmer steps off the platform to dive into the water, potential energy is converted to kinetic energy. As the swimmer climbs back up to the top of the diving platform, chemical energy is converted to mechanical work.</p>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s01_p04">Although energy can be converted from one form to another, <em class="emphasis">the total amount of energy in the universe remains constant</em>. This is known as the <span class="margin_term"><a class="glossterm">law of conservation of energy</a><span class="glossdef">The total amount of energy in the universe remains constant. Energy can be neither created nor destroyed, but it can be converted from one form to another.</span></span>.<span class="footnote" id="averill_1.0-fn05_001">As you will learn in <a class="xref" href="averill_1.0-ch18#averill_1.0-ch18">Chapter 18 "Chemical Thermodynamics"</a>, the law of conservation of energy is also known as the first law of thermodynamics.</span> <em class="emphasis">Energy cannot be created or destroyed.</em></p>
</div>
<div class="section" id="averill_1.0-ch05_s01_s02">
<h2 class="title editable block">Energy, Heat, and Work</h2>
<p class="para block" id="averill_1.0-ch05_s01_s02_p01">One definition of <span class="margin_term"><a class="glossterm">energy</a><span class="glossdef">The capacity to do work.</span></span> is the capacity to do work. The easiest form of work to visualize is <span class="margin_term"><a class="glossterm">mechanical work</a><span class="glossdef">The energy required to move an object a distance <span class="inlineequation"><math xml:id="averill_1.0-ch05_m004" display="inline"><semantics><mi>d</mi></semantics></math></span> when opposed by a force <span class="inlineequation"><math xml:id="averill_1.0-ch05_m005" display="inline"><semantics><mi>F</mi></semantics></math></span>: <span class="inlineequation"><math xml:id="averill_1.0-ch05_m006" display="inline"><semantics><mrow><mi>w</mi><mo>=</mo><mi>F</mi><mo>×</mo><mi>d</mi><mo>.</mo></mrow></semantics></math></span></span></span> (<a class="xref" href="#averill_1.0-ch05_s01_s02_f01">Figure 5.3 "An Example of Mechanical Work"</a>), which is the energy required to move an object a distance <em class="emphasis">d</em> when opposed by a force <em class="emphasis">F</em>, such as gravity:</p>
<div class="equation block" id="averill_1.0-ch05_s01_s02_eq01">
<p class="title editable"><span class="title-prefix">Equation 5.1</span> </p>
<math xml:id="averill_1.0-ch05_m007" display="block">
<semantics>
<mtable>
<mtr>
<mtd>
<mtext>work </mtext>
<mo>=</mo>
<mtext> force </mtext>
<mo>×</mo>
<mtext> distance</mtext>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>w</mi>
<mo>=</mo>
<mi>F</mi>
<mi>d</mi>
</mtd>
</mtr>
</mtable>
</semantics>
</math>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s02_p02">Because the force (<em class="emphasis">F</em>) that opposes the action is equal to the mass (<em class="emphasis">m</em>) of the object times its acceleration (<em class="emphasis">a</em>), we can also write <a class="xref" href="#averill_1.0-ch05_s01_s02_eq01" xrefstyle="select:label">Equation 5.1</a> as follows:<span class="footnote" id="averill_1.0-fn05_002">Recall from <a class="xref" href="averill_1.0-ch01#averill_1.0-ch01">Chapter 1 "Introduction to Chemistry"</a> that weight is a force caused by the gravitational attraction between two masses, such as you and Earth.</span></p>
<div class="equation block" id="averill_1.0-ch05_s01_s02_eq02">
<p class="title editable"><span class="title-prefix">Equation 5.2</span> </p>
<math xml:id="averill_1.0-ch05_m008" display="block">
<semantics>
<mtable>
<mtr>
<mtd>
<mtext>work </mtext>
<mo>=</mo>
<mtext> mass </mtext>
<mo>×</mo>
<mtext> acceleration </mtext>
<mo>×</mo>
<mtext> distance</mtext>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>w</mi>
<mo>=</mo>
<mi>m</mi>
<mi>a</mi>
<mi>d</mi>
</mtd>
</mtr>
</mtable>
</semantics>
</math>
</div>
<div class="figure small editable block" id="averill_1.0-ch05_s01_s02_f01">
<p class="title"><span class="title-prefix">Figure 5.3</span> An Example of Mechanical Work</p>
<img src="section_09/e8a623a85f15c38665020775b3df8095.jpg">
<p class="para">One form of energy is mechanical work, the energy required to move an object of mass <em class="emphasis">m</em> a distance <em class="emphasis">d</em> when opposed by a force <em class="emphasis">F</em>, such as gravity.</p>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s02_p03">Consider the mechanical work required for you to travel from the first floor of a building to the second. Whether you take an elevator or an escalator, trudge upstairs, or leap up the stairs two at a time, energy is expended to overcome the force of gravity. The amount of work done (<em class="emphasis">w</em>) and thus the energy required depends on three things: (1) the height of the second floor (the distance <em class="emphasis">d</em>); (2) your mass, which must be raised that distance against the downward acceleration due to gravity; and (3) your path, as you will learn in <a class="xref" href="averill_1.0-ch05_s02#averill_1.0-ch05_s02">Section 5.2 "Enthalpy"</a>.</p>
<p class="para editable block" id="averill_1.0-ch05_s01_s02_p04">In contrast, <span class="margin_term"><a class="glossterm">heat (<em class="emphasis">q</em>)</a><span class="glossdef">Thermal energy that can be transformed from an object at one temperature to an object at another temperature.</span></span> is thermal energy that can be transferred from an object at one temperature to an object at another temperature. The net transfer of thermal energy stops when the two objects reach the same temperature.</p>
<p class="para editable block" id="averill_1.0-ch05_s01_s02_p05">The energy of an object can be changed only by the transfer of energy to or from another object in the form of heat,<span class="footnote" id="averill_1.0-fn05_003">As you will learn in <a class="xref" href="averill_1.0-ch06#averill_1.0-ch06">Chapter 6 "The Structure of Atoms"</a>, hot objects can also lose energy as radiant energy, such as heat or light. This energy is converted to heat when it is absorbed by another object. Hence radiant energy is equivalent to heat.</span> work performed on or by the object, or some combination of heat and work. Consider, for example, the energy stored in a fully charged battery. As shown in <a class="xref" href="#averill_1.0-ch05_s01_s02_f02">Figure 5.4 "Energy Transfer"</a>, this energy can be used primarily to perform work (e.g., running an electric fan) or to generate light and heat (e.g., illuminating a light bulb). When the battery is fully discharged in either case, the total change in energy is the same, even though the fraction released as work or heat varies greatly. The sum of the heat produced and the work performed equals the change in energy (Δ<em class="emphasis">E</em>):</p>
<div class="equation block" id="averill_1.0-ch05_s01_s02_eq03">
<p class="title editable"><span class="title-prefix">Equation 5.3</span> </p>
<math xml:id="averill_1.0-ch05_m009" display="block">
<semantics>
<mtable>
<mtr>
<mtd>
<mtext>energy change </mtext>
<mo>=</mo>
<mtext> heat </mtext>
<mo>+</mo>
<mtext> work</mtext>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>Δ</mi>
<mi>E</mi>
<mo>=</mo>
<mi>q</mi>
<mo>+</mo>
<mi>w</mi>
</mtd>
</mtr>
</mtable>
</semantics>
</math>
</div>
<div class="callout editable block" id="averill_1.0-ch05_s01_s02_n01">
<h3 class="title">Note the Pattern</h3>
<p class="para" id="averill_1.0-ch05_s01_s02_p06">Energy can be transferred only in the form of heat, work performed on or by an object, or some combination of heat and work.</p>
</div>
<div class="figure large editable block" id="averill_1.0-ch05_s01_s02_f02">
<p class="title"><span class="title-prefix">Figure 5.4</span> Energy Transfer</p>
<img src="section_09/80b676a489a5e821726dd7f0d2a4f48a.jpg">
<p class="para">Discharging a fully charged battery releases the same amount of energy whether the battery is used to run a fan (a) or illuminate a light bulb (b). In (a), most of the energy is used to perform work, which turns the blades of the fan and thus moves the air; only a small portion of the energy is released as heat by the electric motor. In (b), all the energy is released as heat and light; no work is done.</p>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s02_p07">Energy is an extensive property of matter—for example, the amount of <strong class="emphasis bold">thermal energy</strong> in an object is proportional to both its mass and its temperature. (For more information on the properties of matter, see <a class="xref" href="averill_1.0-ch01#averill_1.0-ch01">Chapter 1 "Introduction to Chemistry"</a>.) A water heater that holds 150 L of water at 50°C contains much more thermal energy than does a 1 L pan of water at 50°C. Similarly, a bomb contains much more chemical energy than does a firecracker. We now present a more detailed description of kinetic and potential energy.</p>
</div>
<div class="section" id="averill_1.0-ch05_s01_s03">
<h2 class="title editable block">Kinetic and Potential Energy</h2>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p01">The kinetic energy of an object is related to its mass <em class="emphasis">m</em> and velocity <em class="emphasis">v</em>:</p>
<div class="equation block" id="averill_1.0-ch05_s01_s03_eq01">
<p class="title editable"><span class="title-prefix">Equation 5.4</span> </p>
<math xml:id="averill_1.0-ch05_m010" display="block">
<semantics>
<mrow>
<mi>K</mi>
<mi>E</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>m</mi>
<msup>
<mi>v</mi>
<mtext>2</mtext>
</msup>
</mrow>
</semantics>
</math>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p02">For example, the kinetic energy of a 1360 kg (approximately 3000 lb) automobile traveling at a velocity of 26.8 m/s (approximately 60 mi/h) is</p>
<div class="equation block" id="averill_1.0-ch05_s01_s03_eq02">
<p class="title editable"><span class="title-prefix">Equation 5.5</span> </p>
<math xml:id="averill_1.0-ch05_m011" display="block">
<semantics>
<mrow>
<mi>K</mi>
<mi>E</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1360</mn>
<mtext> kg)</mtext>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>26.8</mn>
<mtext> m</mtext>
</mrow>
<mtext>s</mtext>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
<mo>=</mo>
<mtext> 4</mtext>
<mtext>.88</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>5</mtext>
</msup>
<mtext> </mtext>
<mfrac>
<mrow>
<mtext>kg</mtext>
<mo>·</mo>
<msup>
<mtext>m</mtext>
<mtext>2</mtext>
</msup>
</mrow>
<mrow>
<msup>
<mtext>s</mtext>
<mn>2</mn>
</msup>
</mrow>
</mfrac>
</mrow>
</semantics>
</math>
</div>
<p class="para block" id="averill_1.0-ch05_s01_s03_p03">Because all forms of energy can be interconverted, energy in any form can be expressed using the same units as kinetic energy. The SI unit of energy, the <span class="margin_term"><a class="glossterm">joule (J)</a><span class="glossdef">The SI unit of energy: <span class="inlineequation"><math xml:id="averill_1.0-ch05_m012" display="inline"><semantics><mrow><mtext>1 J </mtext><mo>=</mo><mtext> 1 kg</mtext><mo>•</mo><msup><mtext>m</mtext><mtext>2</mtext></msup><mo>/</mo><msup><mtext>s</mtext><mtext>2</mtext></msup><mo>.</mo></mrow></semantics></math></span></span></span>,<span class="footnote" id="averill_1.0-fn05_004">The joule is named after the British physicist James Joule (1818–1889), an early worker in the field of energy.</span> is defined as 1 kilogram·meter<sup class="superscript">2</sup>/second<sup class="superscript">2</sup> (kg·m<sup class="superscript">2</sup>/s<sup class="superscript">2</sup>). Because a joule is such a small quantity of energy, chemists usually express energy in kilojoules (1 kJ = 10<sup class="superscript">3</sup> J). For example, the kinetic energy of the 1360 kg car traveling at 26.8 m/s is 4.88 × 10<sup class="superscript">5</sup> J or 4.88 × 10<sup class="superscript">2</sup> kJ. It is important to remember that <em class="emphasis">the units of energy are the same regardless of the form of energy</em>, whether thermal, radiant, chemical, or any other form. Because heat and work result in changes in energy, their units must also be the same.</p>
<div class="informalfigure small block">
<img src="section_09/14465abccda34c597d6106b06e6d87b7.jpg">
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p04">To demonstrate, let’s calculate the potential energy of the same 1360 kg automobile if it were parked on the top level of a parking garage 36.6 m (120 ft) high. Its potential energy is equivalent to the amount of work required to raise the vehicle from street level to the top level of the parking garage, which is given by <a class="xref" href="#averill_1.0-ch05_s01_s02_eq01" xrefstyle="select:label">Equation 5.1</a> (<em class="emphasis">w</em> = <em class="emphasis">Fd</em>). According to <a class="xref" href="#averill_1.0-ch05_s01_s02_eq02" xrefstyle="select:label">Equation 5.2</a>, the force (<em class="emphasis">F</em>) exerted by gravity on any object is equal to its mass (<em class="emphasis">m</em>, in this case, 1360 kg) times the acceleration (<em class="emphasis">a</em>) due to gravity (<em class="emphasis">g</em>, 9.81 m/s<sup class="superscript">2</sup> at Earth’s surface). The distance (<em class="emphasis">d</em>) is the height (<em class="emphasis">h</em>) above street level (in this case, 36.6 m). Thus the potential energy of the car is as follows:</p>
<div class="equation block" id="averill_1.0-ch05_s01_s03_eq03">
<p class="title editable"><span class="title-prefix">Equation 5.6</span> </p>
<math xml:id="averill_1.0-ch05_m013" display="block">
<semantics>
<mrow>
<mtable columnalign="left">
<mtr columnalign="left">
<mtd columnalign="left">
<mrow>
<mi>P</mi>
<mi>E</mi>
</mrow>
</mtd>
<mtd columnalign="left">
<mo>=</mo>
</mtd>
<mtd columnalign="left">
<mrow>
<mi>F</mi>
<mi>d</mi>
<mo>=</mo>
<mi>m</mi>
<mi>a</mi>
<mi>d</mi>
<mo>=</mo>
<mi>m</mi>
<mi>g</mi>
<mi>h</mi>
</mrow>
</mtd>
</mtr>
<mtr columnalign="left">
<mtd columnalign="left">
<mrow>
<mi>P</mi>
<mi>E</mi>
</mrow>
</mtd>
<mtd columnalign="left">
<mo>=</mo>
</mtd>
<mtd columnalign="left">
<mrow>
<mtext>(1360 kg)</mtext>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>9</mtext>
<mtext>.81 m</mtext>
</mrow>
<mrow>
<msup>
<mtext>s</mtext>
<mtext>2</mtext>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mtext>(36</mtext>
<mtext>.6 m) </mtext>
<mo>=</mo>
<mtext> 4</mtext>
<mtext>.88</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>5</mtext>
</msup>
<mtext> </mtext>
<mfrac>
<mrow>
<mtext>kg</mtext>
<mo>·</mo>
<msup>
<mtext>m</mtext>
<mtext>2</mtext>
</msup>
</mrow>
<mrow>
<msup>
<mtext>s</mtext>
<mtext>2</mtext>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr columnalign="left">
<mtd columnalign="left">
<mrow></mrow>
</mtd>
<mtd columnalign="left">
<mo>=</mo>
</mtd>
<mtd columnalign="left">
<mrow>
<mtext>4</mtext>
<mtext>.88</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>5</mtext>
</msup>
<mtext> J </mtext>
<mo>=</mo>
<mtext> 4</mtext>
<mtext>.88</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>2</mtext>
</msup>
<mtext> kJ</mtext>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</semantics>
</math>
</div>
<div class="informalfigure small block">
<img src="section_09/1da5f0cd7ded86927c7166b30cb758e3.jpg">
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p05">The units of potential energy are the same as the units of kinetic energy. Notice that in this case the potential energy of the stationary automobile at the top of a 36.6 m high parking garage is the same as its kinetic energy at 60 mi/h. If the vehicle fell from the roof of the parking garage, its potential energy would be converted to kinetic energy, and it is reasonable to infer that the vehicle would be traveling at 60 mi/h just before it hit the ground, neglecting air resistance. After the car hit the ground, its potential and kinetic energy would both be zero.</p>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p06">Potential energy is usually defined relative to an arbitrary standard position (in this case, the street was assigned an elevation of zero). As a result, we usually calculate only differences in potential energy: in this case, the difference between the potential energy of the car on the top level of the parking garage and the potential energy of the same car on the street at the base of the garage.</p>
<div class="informalfigure small block">
<img src="section_09/c9bb0be7916167d699339d70d1f147c6.jpg">
</div>
<div class="informalfigure small block">
<img src="section_09/9838d8b32ce5f09ae412ed755d45d88e.jpg">
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p07">A recent and spectacular example of the conversion of potential energy to kinetic energy was seen by the earthquake near the east coast of Honshu, Japan, on March 11, 2011. The magnitude 9.0 earthquake occurred along the Japan Trench subduction zone, the interface boundary between the Pacific and North American geological plates. During its westward movement, the Pacific plate became trapped under the North American plate, and its further movement was prevented. When there was sufficient potential energy to allow the Pacific plate to break free, approximately 7.1 × 10<sup class="superscript">15</sup> kJ of potential energy was released as kinetic energy, the equivalent of 4.75 × 10<sup class="superscript">8</sup> tn of TNT (trinitrotoluene) or 25,003 nuclear bombs. The island of Japan experienced the worst devastation in its history from the earthquake, resulting tsunami, and aftershocks. Historical records indicate that an earthquake of such force occurs in some region of the globe approximately every 1000 years. One such earthquake and resulting tsunami is speculated to have caused the destruction of the lost city of Atlantis, referred to by the ancient Greek philosopher Plato.</p>
<div class="callout editable block" id="averill_1.0-ch05_s01_s03_n01">
<h3 class="title">Note the Pattern</h3>
<p class="para" id="averill_1.0-ch05_s01_s03_p08">The units of energy are the same for all forms of energy.</p>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p09">Energy can also be expressed in the non-SI units of <span class="margin_term"><a class="glossterm">calories (cal)</a><span class="glossdef">A non-SI unit of energy: 1 cal = 4.184 J exactly.</span></span>, where 1 cal was originally defined as the amount of energy needed to raise the temperature of exactly 1 g of water from 14.5°C to 15.5°C.<span class="footnote" id="averill_1.0-fn05_005">We specify the exact temperatures because the amount of energy needed to raise the temperature of 1 g of water 1°C varies slightly with elevation. To three significant figures, however, this amount is 1.00 cal over the temperature range 0°C–100°C.</span> The name is derived from the Latin <em class="emphasis">calor</em>, meaning “heat.” Although energy may be expressed as either calories or joules, calories were defined in terms of heat, whereas joules were defined in terms of motion. Because calories and joules are both units of energy, however, the calorie is now defined in terms of the joule:</p>
<div class="equation block" id="averill_1.0-ch05_s01_s03_eq04">
<p class="title editable"><span class="title-prefix">Equation 5.7</span> </p>
<math xml:id="averill_1.0-ch05_m014" display="block">
<semantics>
<mtable>
<mtr>
<mtd>
<mtext>1 cal </mtext>
<mo>=</mo>
<mtext> 4</mtext>
<mtext>.184 J exactly</mtext>
</mtd>
</mtr>
<mtr>
<mtd>
<mtext>1 J </mtext>
<mo>=</mo>
<mtext> 0</mtext>
<mtext>.2390 cal</mtext>
</mtd>
</mtr>
</mtable>
</semantics>
</math>
</div>
<p class="para editable block" id="averill_1.0-ch05_s01_s03_p10">In this text, we will use the SI units—joules (J) and kilojoules (kJ)—exclusively, except when we deal with nutritional information, addressed in <a class="xref" href="averill_1.0-ch05_s04#averill_1.0-ch05_s04">Section 5.4 "Thermochemistry and Nutrition"</a>.</p>
<div class="exercises block" id="averill_1.0-ch05_s01_s03_n02">
<h3 class="title">Example 1</h3>
<ol class="orderedlist" id="averill_1.0-ch05_s01_s03_l01" numeration="loweralpha">
<li>If the mass of a baseball is 149 g, what is the kinetic energy of a fastball clocked at 100 mi/h?</li>
<li>A batter hits a pop fly, and the baseball (with a mass of 149 g) reaches an altitude of 250 ft. If we assume that the ball was 3 ft above home plate when hit by the batter, what is the increase in its potential energy?</li>
</ol>
<p class="para" id="averill_1.0-ch05_s01_s03_p11"><strong class="emphasis bold">Given: </strong>mass and velocity or height</p>
<p class="para" id="averill_1.0-ch05_s01_s03_p12"><strong class="emphasis bold">Asked for: </strong>kinetic and potential energy</p>
<p class="para" id="averill_1.0-ch05_s01_s03_p13">
<strong class="emphasis bold">Strategy:</strong>
</p>
<p class="para" id="averill_1.0-ch05_s01_s03_p14">Use <a class="xref" href="#averill_1.0-ch05_s01_s03_eq01" xrefstyle="select:label">Equation 5.4</a> to calculate the kinetic energy and <a class="xref" href="#averill_1.0-ch05_s01_s03_eq03" xrefstyle="select:label">Equation 5.6</a> to calculate the potential energy, as appropriate.</p>
<p class="para" id="averill_1.0-ch05_s01_s03_p15">
<strong class="emphasis bold">Solution:</strong>
</p>
<ol class="orderedlist" id="averill_1.0-ch05_s01_s03_l02" numeration="loweralpha">
<li>
<p class="para">The kinetic energy of an object is given by <span class="inlineequation"><math xml:id="averill_1.0-ch05_m015" display="inline"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mtext>.</mtext></mrow></semantics></math></span> In this case, we know both the mass and the velocity, but we must convert the velocity to SI units:</p>
<span class="informalequation">
<math xml:id="averill_1.0-ch05_m016" display="block">
<semantics>
<mrow>
<mi>v</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>100 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>mi</mtext>
</mrow>
</menclose>
</mrow>
<mrow>
<mtext>1 </mtext>
<menclose notation="updiagonalstrike">
<mtext>h</mtext>
</menclose>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mtext> </mtext>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>1 </mtext>
<menclose notation="updiagonalstrike">
<mtext>h</mtext>
</menclose>
</mrow>
<mrow>
<mtext>60 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>min</mtext>
</mrow>
</menclose>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mtext> </mtext>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>1 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>min</mtext>
</mrow>
</menclose>
</mrow>
<mrow>
<mtext>60 s</mtext>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mtext> </mtext>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>1</mtext>
<mtext>.61 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>km</mtext>
</mrow>
</menclose>
</mrow>
<mrow>
<mtext>1 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>mi</mtext>
</mrow>
</menclose>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mtext> </mtext>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>1000 m</mtext>
</mrow>
<mrow>
<mtext>1 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>km</mtext>
</mrow>
</menclose>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mtext> 44</mtext>
<mtext>.7 m/s</mtext>
</mrow>
</semantics>
</math>
</span>
<p class="para" id="averill_1.0-ch05_s01_s03_p16">The kinetic energy of the baseball is therefore</p>
<span class="informalequation">
<math xml:id="averill_1.0-ch05_m017" display="block">
<semantics>
<mrow>
<mi>K</mi>
<mi>E</mi>
<mo>=</mo>
<mtext> </mtext>
<mfrac>
<mrow>
<mtext>149</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</mfrac>
<mtext> </mtext>
<menclose notation="updiagonalstrike">
<mtext>g</mtext>
</menclose>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>1 kg</mtext>
</mrow>
<mrow>
<mtext>1000 </mtext>
<menclose notation="updiagonalstrike">
<mtext>g</mtext>
</menclose>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>44</mtext>
<mtext>.7 m</mtext>
</mrow>
<mtext>s</mtext>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
<mo>=</mo>
<mtext> 1</mtext>
<mtext>.49</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>2</mtext>
</msup>
<mtext> </mtext>
<mfrac>
<mrow>
<mtext>kg</mtext>
<mo>·</mo>
<msup>
<mtext>m</mtext>
<mtext>2</mtext>
</msup>
</mrow>
<mrow>
<msup>
<mtext>s</mtext>
<mtext>2</mtext>
</msup>
</mrow>
</mfrac>
<mo>=</mo>
<mtext> 1</mtext>
<mtext>.49</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>2</mtext>
</msup>
<mtext> J</mtext>
</mrow>
</semantics>
</math>
</span>
</li>
<li>
<p class="para">The increase in potential energy is the same as the amount of work required to raise the ball to its new altitude, which is (250 − 3) = 247 feet above its initial position. Thus</p>
<span class="informalequation">
<math xml:id="averill_1.0-ch05_m018" display="block">
<semantics>
<mrow>
<mi>P</mi>
<mi>E</mi>
<mo>=</mo>
<mtext> 149 </mtext>
<menclose notation="updiagonalstrike">
<mtext>g</mtext>
</menclose>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>1 kg</mtext>
</mrow>
<mrow>
<mtext>1000 </mtext>
<menclose notation="updiagonalstrike">
<mtext>g</mtext>
</menclose>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>9</mtext>
<mtext>.81 m</mtext>
</mrow>
<mrow>
<msup>
<mtext>s</mtext>
<mtext>2</mtext>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mtext>247 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>ft</mtext>
</mrow>
</menclose>
<mo stretchy="false">)</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mtext>0</mtext>
<mtext>.3048 m</mtext>
</mrow>
<mrow>
<mtext>1 </mtext>
<menclose notation="updiagonalstrike">
<mrow>
<mtext>ft</mtext>
</mrow>
</menclose>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mtext> 1</mtext>
<mtext>.10</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>2</mtext>
</msup>
<mtext> </mtext>
<mfrac>
<mrow>
<mtext>kg</mtext>
<mo>·</mo>
<msup>
<mtext>m</mtext>
<mtext>2</mtext>
</msup>
</mrow>
<mrow>
<msup>
<mtext>s</mtext>
<mtext>2</mtext>
</msup>
</mrow>
</mfrac>
<mo>=</mo>
<mtext> 1</mtext>
<mtext>.10</mtext>
<mo>×</mo>
<msup>
<mrow>
<mtext>10</mtext>
</mrow>
<mtext>2</mtext>
</msup>
<mtext> J</mtext>
</mrow>
</semantics>
</math>
</span>
</li>
</ol>
<p class="simpara">Exercise</p>
<ol class="orderedlist" id="averill_1.0-ch05_s01_s03_l03" numeration="loweralpha">
<li>In a bowling alley, the distance from the foul line to the head pin is 59 ft, 10 13/16 in. (18.26 m). If a 16 lb (7.3 kg) bowling ball takes 2.0 s to reach the head pin, what is its kinetic energy at impact? (Assume its speed is constant.)</li>
<li>What is the potential energy of a 16 lb bowling ball held 3.0 ft above your foot?</li>
</ol>
<p class="para" id="averill_1.0-ch05_s01_s03_p17">
<strong class="emphasis bold">Answer:</strong>
</p>
<ol class="orderedlist" id="averill_1.0-ch05_s01_s03_l04" numeration="loweralpha">
<li>3.10 × 10<sup class="superscript">2</sup> J</li>
<li>65 J</li>
</ol>
</div>
<div class="key_takeaways block" id="averill_1.0-ch05_s01_s03_n03">
<h3 class="title">Key Equations</h3>
<p class="para">
<strong class="emphasis bold">general definition of work</strong>
</p>
<p class="para"><a class="xref" href="#averill_1.0-ch05_s01_s02_eq01" xrefstyle="select:label">Equation 5.1</a>: <em class="emphasis">w</em> = <em class="emphasis">Fd</em></p>
<p class="para"><a class="xref" href="#averill_1.0-ch05_s01_s02_eq02" xrefstyle="select:label">Equation 5.2</a>: <em class="emphasis">w</em> = <em class="emphasis">mad</em></p>
<p class="para">
<strong class="emphasis bold">relationship between energy, heat, and work</strong>
</p>
<p class="para"><a class="xref" href="#averill_1.0-ch05_s01_s02_eq03" xrefstyle="select:label">Equation 5.3</a>: Δ<em class="emphasis">E</em> = <em class="emphasis">q</em> + <em class="emphasis">w</em></p>
<p class="para">
<strong class="emphasis bold">kinetic energy</strong>
</p>
<p class="para"><a class="xref" href="#averill_1.0-ch05_s01_s03_eq01" xrefstyle="select:label">Equation 5.4</a>: <span class="inlineequation"><math xml:id="averill_1.0-ch05_m019" display="inline"><semantics><mrow><mi>K</mi><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><msup><mi>v</mi><mtext>2</mtext></msup></mrow></semantics></math></span></p>
<p class="para">
<strong class="emphasis bold">potential energy in a gravitational field</strong>
</p>
<p class="para"><a class="xref" href="#averill_1.0-ch05_s01_s03_eq03" xrefstyle="select:label">Equation 5.6</a>: <em class="emphasis">PE</em> = <em class="emphasis">mgh</em></p>
</div>
<div class="callout editable block" id="averill_1.0-ch05_s01_s03_n04">
<h3 class="title">Summary</h3>
<p class="para" id="averill_1.0-ch05_s01_s03_p18"><em class="emphasis">Thermochemistry</em> is a branch of chemistry that qualitatively and quantitatively describes the energy changes that occur during chemical reactions. <strong class="emphasis bold">Energy</strong> is the capacity to do work. <strong class="emphasis bold">Mechanical work</strong> is the amount of energy required to move an object a given distance when opposed by a force. <strong class="emphasis bold">Thermal energy</strong> is due to the random motions of atoms, molecules, or ions in a substance. The <strong class="emphasis bold">temperature</strong> of an object is a measure of the amount of thermal energy it contains. <strong class="emphasis bold">Heat (</strong><em class="emphasis bolditalic">q</em><strong class="emphasis bold">)</strong> is the transfer of thermal energy from a hotter object to a cooler one. Energy can take many forms; most are different varieties of <strong class="emphasis bold">potential energy (<em class="emphasis bolditalic">PE</em>)</strong>, energy caused by the relative position or orientation of an object. <strong class="emphasis bold">Kinetic energy (<em class="emphasis bolditalic">KE</em>)</strong> is the energy an object possesses due to its motion. Energy can be converted from one form to another, but the <strong class="emphasis bold">law of conservation of energy</strong> states that energy can be neither created nor destroyed. The most common units of energy are the <strong class="emphasis bold">joule (J)</strong>, defined as 1 (kg·m<sup class="superscript">2</sup>)/s<sup class="superscript">2</sup>, and the <strong class="emphasis bold">calorie</strong>, defined as the amount of energy needed to raise the temperature of 1 g of water by 1°C (1 cal = 4.184 J).</p>
</div>
<div class="key_takeaways editable block" id="averill_1.0-ch05_s01_s03_n05">
<h3 class="title">Key Takeaway</h3>
<ul class="itemizedlist" id="averill_1.0-ch05_s01_s03_l05">
<li>All forms of energy can be interconverted. Three things can change the energy of an object: the transfer of heat, work performed on or by an object, or some combination of heat and work.</li>
</ul>
</div>
<div class="qandaset block" id="averill_1.0-ch05_s01_s03_qs01" defaultlabel="number">
<h3 class="title">Conceptual Problems</h3>
<ol class="qandadiv" id="averill_1.0-ch05_s01_s03_qs01_qd01">
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa01">
<div class="question">
<p class="para">What is the relationship between mechanical work and energy?</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa02">
<div class="question">
<p class="para">Does a person with a mass of 50 kg climbing a height of 15 m do work? Explain your answer. Does that same person do work while descending a mountain?</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa03">
<div class="question">
<p class="para">If a person exerts a force on an immovable object, does that person do work? Explain your answer.</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa04">
<div class="question">
<p class="para">Explain the differences between electrical energy, nuclear energy, and chemical energy.</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa05">
<div class="question">
<p class="para">The chapter describes thermal energy, radiant energy, electrical energy, nuclear energy, and chemical energy. Which form(s) of energy are represented by each of the following?</p>
<ol class="orderedlist" numeration="loweralpha">
<li>sunlight</li>
<li>the energy produced by a cathode ray tube, such as that found in a television</li>
<li>the energy emitted from radioactivity</li>
<li>the energy emitted from a burning candle</li>
<li>the energy associated with a steam engine</li>
<li>the energy emitted by a cellular phone</li>
<li>the energy associated with a stick of dynamite</li>
</ol>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa06">
<div class="question">
<p class="para">Describe the various forms of energy that are interconverted when a flashlight is switched on.</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa07">
<div class="question">
<p class="para">Describe the forms of energy that are interconverted when the space shuttle lifts off.</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa08">
<div class="question">
<p class="para">Categorize each of the following as representing kinetic energy or potential energy.</p>
<ol class="orderedlist" numeration="loweralpha">
<li>the energy associated with a laptop computer sitting on the edge of a desk</li>
<li>shoveling snow</li>
<li>water pouring out of a fire hydrant</li>
<li>the energy released by an earthquake</li>
<li>the energy in a volcano about to erupt</li>
<li>the energy associated with a coiled spring</li>
</ol>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa09">
<div class="question">
<p class="para">Are the units for potential energy the same as the units for kinetic energy? Can an absolute value for potential energy be obtained? Explain your answer.</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa10">
<div class="question">
<p class="para">Categorize each of the following as representing kinetic energy or potential energy.</p>
<ol class="orderedlist" numeration="loweralpha">
<li>water cascading over Niagara Falls</li>
<li>a beaker balanced on the edge of a sink</li>
<li>the energy released during a mudslide</li>
<li>rollerblading</li>
<li>the energy in a block of ice on a rooftop before a thaw</li>
</ol>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa11">
<div class="question">
<p class="para">Why does hammering a piece of sheet metal cause the metal to heat up?</p>
</div>
</li>
</ol>
</div>
<div class="qandaset block" id="averill_1.0-ch05_s01_s03_qs01_ans" defaultlabel="number">
<h3 class="title">Answers</h3>
<ol class="qandadiv">
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa01_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa02_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa03_ans">
<div class="answer">
<p class="para">Technically, the person is not doing any work, since the object does not move.</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa04_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa05_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa06_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa07_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa08_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa09_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa10_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs01_qd01_qa11_ans">
<div class="answer">
<p class="para">The kinetic energy of the hammer is transferred to the metal.</p>
</div>
</li>
</ol>
</div>
<div class="qandaset block" id="averill_1.0-ch05_s01_s03_qs02" defaultlabel="number">
<h3 class="title">Numerical Problems</h3>
<ol class="qandadiv" id="averill_1.0-ch05_s01_s03_qs02_qd01">
<p class="para">
<em class="emphasis">Please be sure you are familiar with the topics discussed in Essential Skills 4 (<a class="xref" href="averill_1.0-ch05_s06#averill_1.0-ch05_s06">Section 5.6 "Essential Skills 4"</a>) before proceeding to the Numerical Problems.</em>
</p>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs02_qd01_qa01">
<div class="question">
<p class="para">Describe the mathematical relationship between (a) the thermal energy stored in an object and that object’s mass and (b) the thermal energy stored in an object and that object’s temperature.</p>
</div>
</li>
<li class="qandaentry" id="averill_1.0-ch05_s01_s03_qs02_qd01_qa02">
<div class="question">
<p class="para">How much energy (in kilojoules) is released or stored when each of the following occurs?</p>