We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\automl\presets\tabular_presets.py:549, in TabularAutoML.fit_predict(self, train_data, roles, train_features, cv_iter, valid_data, valid_features, log_file, verbose) 546 if valid_data is not None: 547 data, _ = read_data(valid_data, valid_features, self.cpu_limit, self.read_csv_params) --> 549 oof_pred = super().fit_predict(train, roles=roles, cv_iter=cv_iter, valid_data=valid_data, verbose=verbose) 551 return cast(NumpyDataset, oof_pred) File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\automl\presets\base.py:205, in AutoMLPreset.fit_predict(self, train_data, roles, train_features, cv_iter, valid_data, valid_features, verbose) 202 logger.info(f"- memory: {self.memory_limit} GB\n") 204 self.timer.start() --> 205 result = super().fit_predict( 206 train_data, 207 roles, 208 train_features, 209 cv_iter, 210 valid_data, 211 valid_features, 212 verbose=verbose, 213 ) 215 logger.info("\x1b[1mAutoml preset training completed in {:.2f} seconds\x1b[0m\n".format(self.timer.time_spent)) 216 logger.info(f"Model description:\n{self.create_model_str_desc()}\n") File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\automl\base.py:212, in AutoML.fit_predict(self, train_data, roles, train_features, cv_iter, valid_data, valid_features, verbose) 206 logger.info( 207 f"Layer \x1b[1m{leven_number}\x1b[0m train process start. Time left {self.timer.time_left:.2f} secs" 208 ) 210 for k, ml_pipe in enumerate(level): --> 212 pipe_pred = ml_pipe.fit_predict(train_valid) 213 level_predictions.append(pipe_pred) 214 pipes.append(ml_pipe) File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\pipelines\ml\base.py:120, in MLPipeline.fit_predict(self, train_valid) 117 train_valid = train_valid.apply_selector(self.pre_selection) 119 # apply features pipeline --> 120 train_valid = train_valid.apply_feature_pipeline(self.features_pipeline) 122 # train and apply post selection 123 train_valid = train_valid.apply_selector(self.post_selection) File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\validation\base.py:79, in TrainValidIterator.apply_feature_pipeline(self, features_pipeline) 69 """Apply features pipeline on train data. 70 71 Args: (...) 76 77 """ 78 train_valid = copy(self) ---> 79 train_valid.train = features_pipeline.fit_transform(train_valid.train) 80 return train_valid File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\pipelines\features\base.py:117, in FeaturesPipeline.fit_transform(self, train) 115 # TODO: Think about input/output features attributes 116 self._input_features = train.features --> 117 self._pipeline = self._merge_seq(train) if self.sequential else self._merge(train) 119 return self._pipeline.fit_transform(train) File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\pipelines\features\base.py:162, in FeaturesPipeline._merge(self, data) 160 pipes = [] 161 for pipe in self.pipes: --> 162 pipes.append(pipe(data)) 164 return UnionTransformer(pipes) if len(pipes) > 1 else pipes[-1] File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\pipelines\features\image_pipeline.py:103, in ImageAutoFeatures.create_pipeline(self, train) 98 imgs = get_columns_by_role(train, "Path") 99 if len(imgs) > 0: 100 imgs_processing = SequentialTransformer( 101 [ 102 ColumnsSelector(keys=imgs), --> 103 AutoCVWrap( 104 self.embed_model, 105 self.weights_path, 106 self.cache_dir, 107 self.subs, 108 self.device, 109 self.n_jobs, 110 self.random_state, 111 self.is_advprop, 112 self.batch_size, 113 self.verbose, 114 ), 115 SequentialTransformer([FillInf(), FillnaMedian(), StandardScaler()]), 116 ] 117 ) 118 transformers_list.append(imgs_processing) 120 union_all = UnionTransformer(transformers_list) File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\transformers\image.py:197, in AutoCVWrap.__init__(self, model, weights_path, cache_dir, subs, device, n_jobs, random_state, is_advprop, batch_size, verbose) 194 self.dicts = {} 195 self.cache_dir = cache_dir --> 197 self.transformer = DeepImageEmbedder( 198 device, 199 n_jobs, 200 random_state, 201 is_advprop, 202 model, 203 weights_path, 204 batch_size, 205 verbose, 206 ) 207 self._emb_name = "DI_" + single_text_hash(self.embed_model) 208 self.emb_size = self.transformer.model.feature_shape File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\image\image.py:300, in DeepImageEmbedder.__init__(self, device, n_jobs, random_state, is_advprop, model_name, weights_path, batch_size, verbose) 297 self.verbose = verbose 298 seed_everything(random_state) --> 300 self.model = EffNetImageEmbedder(model_name, weights_path, self.is_advprop, self.device) File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\lightautoml\image\image.py:196, in EffNetImageEmbedder.__init__(self, model_name, weights_path, is_advprop, device) 193 super(EffNetImageEmbedder, self).__init__() 194 self.device = device 195 self.model = ( --> 196 EfficientNet.from_pretrained( 197 model_name, 198 weights_path=weights_path, 199 advprop=is_advprop, 200 include_top=False, 201 ) 202 .eval() 203 .to(self.device) 204 ) 205 self.feature_shape = self.get_shape() 206 self.is_advprop = is_advprop File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\efficientnet_pytorch\model.py:378, in EfficientNet.from_pretrained(cls, model_name, weights_path, advprop, in_channels, num_classes, **override_params) 351 """Create an efficientnet model according to name. 352 353 Args: (...) 375 A pretrained efficientnet model. 376 """ 377 model = cls.from_name(model_name, num_classes=num_classes, **override_params) --> 378 load_pretrained_weights(model, model_name, weights_path=weights_path, 379 load_fc=(num_classes == 1000), advprop=advprop) 380 model._change_in_channels(in_channels) 381 return model File D:\anaconda3\envs\RecommenderSystems\lib\site-packages\efficientnet_pytorch\utils.py:613, in load_pretrained_weights(model, model_name, weights_path, load_fc, advprop, verbose) 610 ret = model.load_state_dict(state_dict, strict=False) 611 assert set(ret.missing_keys) == set( 612 ['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys) --> 613 assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys) 615 if verbose: 616 print('Loaded pretrained weights for {}'.format(model_name)) AssertionError: Missing keys when loading pretrained weights: ['_fc.weight', '_fc.bias']
I noticed that if class EffNetImageEmbedder in lightautoml.image uses
EfficientNet.from_pretrained( model_name, weights_path=weights_path, advprop=is_advprop, include_top=True, )
Then I would be able to run the code. Please provide a way to modify include_top.
The text was updated successfully, but these errors were encountered:
Hello, someone solve this task ?
Sorry, something went wrong.
@dev-rinchin Hi! With efficientnet-pytorch==0.7.0 works.
DESimakov
No branches or pull requests
🐛 Bug
Expected behavior
I noticed that if class EffNetImageEmbedder in lightautoml.image uses
Then I would be able to run the code. Please provide a way to modify include_top.
The text was updated successfully, but these errors were encountered: