This leaderboard shows the results stored under docs/results
. The scores are all multiplied by 100.
The summary shows the average scores within each task.
Model | Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification |
---|---|---|---|---|---|---|---|
OpenAI/text-embedding-3-large | 73.97 | 74.48 | 82.52 | 77.58 | 93.58 | 53.32 | 62.35 |
intfloat/multilingual-e5-large | 71.65 | 70.98 | 79.70 | 72.89 | 92.96 | 51.24 | 62.15 |
OpenAI/text-embedding-3-small | 70.86 | 66.39 | 79.46 | 73.06 | 92.92 | 51.06 | 62.27 |
pkshatech/GLuCoSE-base-ja | 70.44 | 59.02 | 78.71 | 76.82 | 91.90 | 49.78 | 66.39 |
intfloat/multilingual-e5-base | 70.12 | 68.21 | 79.84 | 69.30 | 92.85 | 48.26 | 62.26 |
intfloat/multilingual-e5-small | 69.52 | 67.27 | 80.07 | 67.62 | 93.03 | 46.91 | 62.19 |
OpenAI/text-embedding-ada-002 | 69.48 | 64.38 | 79.02 | 69.75 | 93.04 | 48.30 | 62.40 |
cl-nagoya/sup-simcse-ja-base | 68.56 | 49.64 | 82.05 | 73.47 | 91.83 | 51.79 | 62.57 |
MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 66.89 | 47.38 | 78.99 | 73.13 | 91.30 | 48.25 | 62.27 |
oshizo/sbert-jsnli-luke-japanese-base-lite | 66.75 | 43.00 | 76.60 | 76.61 | 91.56 | 50.33 | 62.38 |
cl-nagoya/sup-simcse-ja-large | 66.51 | 37.62 | 83.18 | 73.73 | 91.48 | 50.56 | 62.51 |
cl-nagoya/unsup-simcse-ja-large | 66.27 | 40.53 | 80.56 | 74.66 | 90.95 | 48.41 | 62.49 |
MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 66.23 | 46.36 | 77.49 | 73.30 | 91.16 | 46.68 | 62.38 |
MU-Kindai/Japanese-SimCSE-BERT-large-sup | 65.28 | 40.82 | 78.28 | 73.47 | 90.95 | 45.81 | 62.35 |
MU-Kindai/Japanese-MixCSE-BERT-base | 65.14 | 42.59 | 77.05 | 72.90 | 91.01 | 44.95 | 62.33 |
cl-nagoya/unsup-simcse-ja-base | 65.07 | 40.23 | 78.72 | 73.07 | 91.16 | 44.77 | 62.44 |
MU-Kindai/Japanese-DiffCSE-BERT-base | 64.77 | 41.79 | 75.50 | 73.77 | 90.95 | 44.22 | 62.38 |
sentence-transformers/LaBSE | 64.70 | 40.12 | 76.56 | 72.66 | 91.63 | 44.88 | 62.33 |
pkshatech/simcse-ja-bert-base-clcmlp | 64.42 | 37.00 | 76.80 | 71.30 | 91.49 | 47.53 | 62.40 |
MU-Kindai/Japanese-SimCSE-BERT-base-sup | 64.15 | 41.32 | 74.66 | 72.76 | 90.66 | 43.11 | 62.37 |
colorfulscoop/sbert-base-ja | 58.85 | 16.52 | 70.42 | 69.07 | 89.97 | 44.81 | 62.31 |
sentence-transformers/stsb-xlm-r-multilingual | 58.01 | 21.00 | 75.40 | 71.84 | 90.20 | 27.46 | 62.20 |
Model | Avg. | jagovfaqs_22k (ndcg@10) |
jaqket (ndcg@10) |
mrtydi (ndcg@10) |
nlp_journal_abs_intro (ndcg@10) |
nlp_journal_title_abs (ndcg@10) |
nlp_journal_title_intro (ndcg@10) |
---|---|---|---|---|---|---|---|
OpenAI/text-embedding-3-large | 74.48 | 72.41 | 48.21 | 34.88 | 99.33 | 96.55 | 95.47 |
intfloat/multilingual-e5-large | 70.98 | 70.30 | 58.78 | 43.63 | 86.00 | 94.70 | 72.48 |
intfloat/multilingual-e5-base | 68.21 | 65.34 | 50.67 | 38.38 | 87.10 | 94.73 | 73.05 |
intfloat/multilingual-e5-small | 67.27 | 64.11 | 49.97 | 36.05 | 85.21 | 95.26 | 72.99 |
OpenAI/text-embedding-3-small | 66.39 | 64.02 | 33.94 | 20.03 | 98.47 | 91.70 | 90.17 |
OpenAI/text-embedding-ada-002 | 64.38 | 61.02 | 42.56 | 14.51 | 94.99 | 91.23 | 81.98 |
pkshatech/GLuCoSE-base-ja | 59.02 | 63.88 | 39.82 | 30.28 | 78.26 | 82.06 | 59.82 |
cl-nagoya/sup-simcse-ja-base | 49.64 | 51.62 | 50.25 | 13.98 | 68.08 | 65.71 | 48.22 |
MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 47.38 | 50.14 | 45.84 | 13.00 | 55.09 | 74.97 | 45.24 |
MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 46.36 | 47.39 | 39.57 | 11.44 | 64.16 | 70.23 | 45.37 |
oshizo/sbert-jsnli-luke-japanese-base-lite | 43.00 | 51.99 | 42.07 | 10.12 | 49.30 | 71.94 | 32.59 |
MU-Kindai/Japanese-MixCSE-BERT-base | 42.59 | 42.37 | 37.72 | 7.88 | 63.70 | 64.13 | 39.73 |
MU-Kindai/Japanese-DiffCSE-BERT-base | 41.79 | 42.31 | 36.20 | 7.81 | 60.77 | 64.34 | 39.32 |
MU-Kindai/Japanese-SimCSE-BERT-base-sup | 41.32 | 44.11 | 39.61 | 8.15 | 62.76 | 58.39 | 34.89 |
MU-Kindai/Japanese-SimCSE-BERT-large-sup | 40.82 | 47.04 | 44.10 | 11.43 | 43.43 | 62.41 | 36.52 |
cl-nagoya/unsup-simcse-ja-large | 40.53 | 45.09 | 34.60 | 5.75 | 55.07 | 63.07 | 39.61 |
cl-nagoya/unsup-simcse-ja-base | 40.23 | 46.00 | 39.46 | 5.55 | 60.26 | 55.63 | 34.49 |
sentence-transformers/LaBSE | 40.12 | 43.10 | 34.25 | 4.24 | 48.92 | 75.13 | 35.09 |
cl-nagoya/sup-simcse-ja-large | 37.62 | 46.84 | 39.88 | 11.83 | 63.43 | 37.93 | 25.79 |
pkshatech/simcse-ja-bert-base-clcmlp | 37.00 | 41.50 | 46.00 | 10.19 | 40.14 | 59.63 | 24.53 |
sentence-transformers/stsb-xlm-r-multilingual | 21.00 | 25.11 | 21.61 | 2.76 | 28.49 | 36.47 | 11.55 |
colorfulscoop/sbert-base-ja | 16.52 | 21.50 | 13.16 | 0.44 | 28.78 | 22.40 | 12.82 |
Model | Avg. | jsick (spearman) |
jsts (spearman) |
---|---|---|---|
cl-nagoya/sup-simcse-ja-large | 83.18 | 83.80 | 82.57 |
OpenAI/text-embedding-3-large | 82.52 | 81.27 | 83.77 |
cl-nagoya/sup-simcse-ja-base | 82.05 | 82.83 | 81.27 |
cl-nagoya/unsup-simcse-ja-large | 80.56 | 80.15 | 80.98 |
intfloat/multilingual-e5-small | 80.07 | 81.50 | 78.65 |
intfloat/multilingual-e5-base | 79.84 | 81.28 | 78.39 |
intfloat/multilingual-e5-large | 79.70 | 78.40 | 80.99 |
OpenAI/text-embedding-3-small | 79.46 | 80.83 | 78.08 |
OpenAI/text-embedding-ada-002 | 79.02 | 79.09 | 78.94 |
MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 78.99 | 79.84 | 78.14 |
cl-nagoya/unsup-simcse-ja-base | 78.72 | 78.49 | 78.95 |
pkshatech/GLuCoSE-base-ja | 78.71 | 74.97 | 82.46 |
MU-Kindai/Japanese-SimCSE-BERT-large-sup | 78.28 | 78.75 | 77.81 |
MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 77.49 | 78.18 | 76.81 |
MU-Kindai/Japanese-MixCSE-BERT-base | 77.05 | 77.57 | 76.53 |
pkshatech/simcse-ja-bert-base-clcmlp | 76.80 | 73.08 | 80.52 |
oshizo/sbert-jsnli-luke-japanese-base-lite | 76.60 | 72.11 | 81.09 |
sentence-transformers/LaBSE | 76.56 | 76.99 | 76.12 |
MU-Kindai/Japanese-DiffCSE-BERT-base | 75.50 | 75.42 | 75.58 |
sentence-transformers/stsb-xlm-r-multilingual | 75.40 | 72.36 | 78.44 |
MU-Kindai/Japanese-SimCSE-BERT-base-sup | 74.66 | 74.64 | 74.68 |
colorfulscoop/sbert-base-ja | 70.42 | 66.59 | 74.24 |
Model | Avg. | amazon_counterfactual (macro_f1) |
amazon_review (macro_f1) |
massive_intent (macro_f1) |
massive_scenario (macro_f1) |
---|---|---|---|---|---|
OpenAI/text-embedding-3-large | 77.58 | 77.90 | 60.44 | 80.91 | 91.08 |
pkshatech/GLuCoSE-base-ja | 76.82 | 82.44 | 58.07 | 78.85 | 87.94 |
oshizo/sbert-jsnli-luke-japanese-base-lite | 76.61 | 79.95 | 57.48 | 80.26 | 88.75 |
cl-nagoya/unsup-simcse-ja-large | 74.66 | 76.79 | 55.37 | 79.13 | 87.36 |
MU-Kindai/Japanese-DiffCSE-BERT-base | 73.77 | 78.10 | 51.56 | 78.79 | 86.63 |
cl-nagoya/sup-simcse-ja-large | 73.73 | 73.21 | 54.76 | 79.23 | 87.72 |
MU-Kindai/Japanese-SimCSE-BERT-large-sup | 73.47 | 77.25 | 53.42 | 76.83 | 86.39 |
cl-nagoya/sup-simcse-ja-base | 73.47 | 72.34 | 54.41 | 79.52 | 87.60 |
MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 73.30 | 76.20 | 51.52 | 78.95 | 86.54 |
MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 73.13 | 76.36 | 52.75 | 76.88 | 86.51 |
cl-nagoya/unsup-simcse-ja-base | 73.07 | 73.30 | 53.93 | 79.07 | 85.97 |
OpenAI/text-embedding-3-small | 73.06 | 70.01 | 55.92 | 77.66 | 88.67 |
MU-Kindai/Japanese-MixCSE-BERT-base | 72.90 | 77.62 | 50.86 | 77.19 | 85.93 |
intfloat/multilingual-e5-large | 72.89 | 70.66 | 56.54 | 75.78 | 88.59 |
MU-Kindai/Japanese-SimCSE-BERT-base-sup | 72.76 | 76.20 | 52.06 | 77.89 | 84.90 |
sentence-transformers/LaBSE | 72.66 | 73.61 | 51.70 | 76.99 | 88.35 |
sentence-transformers/stsb-xlm-r-multilingual | 71.84 | 75.65 | 51.32 | 74.28 | 86.10 |
pkshatech/simcse-ja-bert-base-clcmlp | 71.30 | 67.49 | 50.85 | 79.67 | 87.20 |
OpenAI/text-embedding-ada-002 | 69.75 | 64.42 | 53.13 | 74.57 | 86.89 |
intfloat/multilingual-e5-base | 69.30 | 63.67 | 54.24 | 72.78 | 86.53 |
colorfulscoop/sbert-base-ja | 69.07 | 72.21 | 47.95 | 72.52 | 83.62 |
intfloat/multilingual-e5-small | 67.62 | 62.14 | 51.27 | 70.85 | 86.22 |
Model | Avg. | esci (ndcg@10) |
---|---|---|
OpenAI/text-embedding-3-large | 93.58 | 93.58 |
OpenAI/text-embedding-ada-002 | 93.04 | 93.04 |
intfloat/multilingual-e5-small | 93.03 | 93.03 |
intfloat/multilingual-e5-large | 92.96 | 92.96 |
OpenAI/text-embedding-3-small | 92.92 | 92.92 |
intfloat/multilingual-e5-base | 92.85 | 92.85 |
pkshatech/GLuCoSE-base-ja | 91.90 | 91.90 |
cl-nagoya/sup-simcse-ja-base | 91.83 | 91.83 |
sentence-transformers/LaBSE | 91.63 | 91.63 |
oshizo/sbert-jsnli-luke-japanese-base-lite | 91.56 | 91.56 |
pkshatech/simcse-ja-bert-base-clcmlp | 91.49 | 91.49 |
cl-nagoya/sup-simcse-ja-large | 91.48 | 91.48 |
MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 91.30 | 91.30 |
MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 91.16 | 91.16 |
cl-nagoya/unsup-simcse-ja-base | 91.16 | 91.16 |
MU-Kindai/Japanese-MixCSE-BERT-base | 91.01 | 91.01 |
cl-nagoya/unsup-simcse-ja-large | 90.95 | 90.95 |
MU-Kindai/Japanese-DiffCSE-BERT-base | 90.95 | 90.95 |
MU-Kindai/Japanese-SimCSE-BERT-large-sup | 90.95 | 90.95 |
MU-Kindai/Japanese-SimCSE-BERT-base-sup | 90.66 | 90.66 |
sentence-transformers/stsb-xlm-r-multilingual | 90.20 | 90.20 |
colorfulscoop/sbert-base-ja | 89.97 | 89.97 |
Model | Avg. | livedoor_news (v_measure_score) |
mewsc16 (v_measure_score) |
---|---|---|---|
OpenAI/text-embedding-3-large | 53.32 | 57.09 | 49.55 |
cl-nagoya/sup-simcse-ja-base | 51.79 | 52.67 | 50.91 |
intfloat/multilingual-e5-large | 51.24 | 57.13 | 45.34 |
OpenAI/text-embedding-3-small | 51.06 | 54.57 | 47.55 |
cl-nagoya/sup-simcse-ja-large | 50.56 | 50.75 | 50.38 |
oshizo/sbert-jsnli-luke-japanese-base-lite | 50.33 | 46.77 | 53.89 |
pkshatech/GLuCoSE-base-ja | 49.78 | 49.89 | 49.68 |
cl-nagoya/unsup-simcse-ja-large | 48.41 | 50.90 | 45.92 |
OpenAI/text-embedding-ada-002 | 48.30 | 49.67 | 46.92 |
intfloat/multilingual-e5-base | 48.26 | 55.03 | 41.49 |
MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 48.25 | 53.20 | 43.31 |
pkshatech/simcse-ja-bert-base-clcmlp | 47.53 | 44.77 | 50.30 |
intfloat/multilingual-e5-small | 46.91 | 54.70 | 39.12 |
MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 46.68 | 53.02 | 40.35 |
MU-Kindai/Japanese-SimCSE-BERT-large-sup | 45.81 | 48.45 | 43.17 |
MU-Kindai/Japanese-MixCSE-BERT-base | 44.95 | 52.62 | 37.28 |
sentence-transformers/LaBSE | 44.88 | 48.29 | 41.47 |
colorfulscoop/sbert-base-ja | 44.81 | 42.99 | 46.64 |
cl-nagoya/unsup-simcse-ja-base | 44.77 | 52.23 | 37.31 |
MU-Kindai/Japanese-DiffCSE-BERT-base | 44.22 | 49.67 | 38.77 |
MU-Kindai/Japanese-SimCSE-BERT-base-sup | 43.11 | 41.04 | 45.18 |
sentence-transformers/stsb-xlm-r-multilingual | 27.46 | 24.49 | 30.43 |
Model | Avg. | paws_x_ja (binary_f1) |
---|---|---|
pkshatech/GLuCoSE-base-ja | 66.39 | 66.39 |
cl-nagoya/sup-simcse-ja-base | 62.57 | 62.57 |
cl-nagoya/sup-simcse-ja-large | 62.51 | 62.51 |
cl-nagoya/unsup-simcse-ja-large | 62.49 | 62.49 |
cl-nagoya/unsup-simcse-ja-base | 62.44 | 62.44 |
pkshatech/simcse-ja-bert-base-clcmlp | 62.40 | 62.40 |
OpenAI/text-embedding-ada-002 | 62.40 | 62.40 |
MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 62.38 | 62.38 |
oshizo/sbert-jsnli-luke-japanese-base-lite | 62.38 | 62.38 |
MU-Kindai/Japanese-DiffCSE-BERT-base | 62.38 | 62.38 |
MU-Kindai/Japanese-SimCSE-BERT-base-sup | 62.37 | 62.37 |
MU-Kindai/Japanese-SimCSE-BERT-large-sup | 62.35 | 62.35 |
OpenAI/text-embedding-3-large | 62.35 | 62.35 |
MU-Kindai/Japanese-MixCSE-BERT-base | 62.33 | 62.33 |
sentence-transformers/LaBSE | 62.33 | 62.33 |
colorfulscoop/sbert-base-ja | 62.31 | 62.31 |
OpenAI/text-embedding-3-small | 62.27 | 62.27 |
MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 62.27 | 62.27 |
intfloat/multilingual-e5-base | 62.26 | 62.26 |
sentence-transformers/stsb-xlm-r-multilingual | 62.20 | 62.20 |
intfloat/multilingual-e5-small | 62.19 | 62.19 |
intfloat/multilingual-e5-large | 62.15 | 62.15 |