-
Notifications
You must be signed in to change notification settings - Fork 2
/
solve.py
58 lines (47 loc) · 1.69 KB
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# This code is used to train the FCN
from __future__ import division
caffe_root = '/home/sepideh/Documents/illuminChngeLrning/caffe/' # path to Caffe-future
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
import numpy as np
# make a bilinear interpolation kernel
# credit @longjon
def upsample_filt(size):
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
return (1 - abs(og[0] - center) / factor) * \
(1 - abs(og[1] - center) / factor)
# set parameters s.t. deconvolutional layers compute bilinear interpolation
# N.B. this is for deconvolution without groups
def interp_surgery(net, layers):
for l in layers:
m, k, h, w = net.params[l][0].data.shape
if m != k:
print 'input + output channels need to be the same'
raise
if h != w:
print 'filters need to be square'
raise
filt = upsample_filt(h)
net.params[l][0].data[range(m), range(k), :, :] = filt
# base net -- the learned coarser model
base_weights = 'fcn-32s-pascalcontext.caffemodel'
# init
caffe.set_mode_gpu()
caffe.set_device(1)
solver = caffe.SGDSolver('solver.prototxt')
# do net surgery to set the deconvolution weights for bilinear interpolation
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
interp_surgery(solver.net, interp_layers)
# copy base weights for fine-tuning
solver.net.copy_from(base_weights)
# solve straight through -- a better approach is to define a solving loop to
# 1. take SGD steps
# 2. score the model by the test net `solver.test_nets[0]`
# 3. repeat until satisfied
solver.step(80000)