forked from aws/aws-sdk-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pool.go
252 lines (208 loc) · 5.47 KB
/
pool.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
package s3manager
import (
"fmt"
"sync"
"github.com/aws/aws-sdk-go/aws"
)
type byteSlicePool interface {
Get(aws.Context) (*[]byte, error)
Put(*[]byte)
ModifyCapacity(int)
SliceSize() int64
Close()
}
type maxSlicePool struct {
// allocator is defined as a function pointer to allow
// for test cases to instrument custom tracers when allocations
// occur.
allocator sliceAllocator
slices chan *[]byte
allocations chan struct{}
capacityChange chan struct{}
max int
sliceSize int64
mtx sync.RWMutex
}
func newMaxSlicePool(sliceSize int64) *maxSlicePool {
p := &maxSlicePool{sliceSize: sliceSize}
p.allocator = p.newSlice
return p
}
var errZeroCapacity = fmt.Errorf("get called on zero capacity pool")
func (p *maxSlicePool) Get(ctx aws.Context) (*[]byte, error) {
// check if context is canceled before attempting to get a slice
// this ensures priority is given to the cancel case first
select {
case <-ctx.Done():
return nil, ctx.Err()
default:
}
p.mtx.RLock()
for {
select {
case bs, ok := <-p.slices:
p.mtx.RUnlock()
if !ok {
// attempt to get on a zero capacity pool
return nil, errZeroCapacity
}
return bs, nil
case <-ctx.Done():
p.mtx.RUnlock()
return nil, ctx.Err()
default:
// pass
}
select {
case _, ok := <-p.allocations:
p.mtx.RUnlock()
if !ok {
// attempt to get on a zero capacity pool
return nil, errZeroCapacity
}
return p.allocator(), nil
case <-ctx.Done():
p.mtx.RUnlock()
return nil, ctx.Err()
default:
// In the event that there are no slices or allocations available
// This prevents some deadlock situations that can occur around sync.RWMutex
// When a lock request occurs on ModifyCapacity, no new readers are allowed to acquire a read lock.
// By releasing the read lock here and waiting for a notification, we prevent a deadlock situation where
// Get could hold the read lock indefinitely waiting for capacity, ModifyCapacity is waiting for a write lock,
// and a Put is blocked trying to get a read-lock which is blocked by ModifyCapacity.
// Short-circuit if the pool capacity is zero.
if p.max == 0 {
p.mtx.RUnlock()
return nil, errZeroCapacity
}
// Since we will be releasing the read-lock we need to take the reference to the channel.
// Since channels are references we will still get notified if slices are added, or if
// the channel is closed due to a capacity modification. This specifically avoids a data race condition
// where ModifyCapacity both closes a channel and initializes a new one while we don't have a read-lock.
c := p.capacityChange
p.mtx.RUnlock()
select {
case _ = <-c:
p.mtx.RLock()
case <-ctx.Done():
return nil, ctx.Err()
}
}
}
}
func (p *maxSlicePool) Put(bs *[]byte) {
p.mtx.RLock()
defer p.mtx.RUnlock()
if p.max == 0 {
return
}
select {
case p.slices <- bs:
p.notifyCapacity()
default:
// If the new channel when attempting to add the slice then we drop the slice.
// The logic here is to prevent a deadlock situation if channel is already at max capacity.
// Allows us to reap allocations that are returned and are no longer needed.
}
}
func (p *maxSlicePool) ModifyCapacity(delta int) {
if delta == 0 {
return
}
p.mtx.Lock()
defer p.mtx.Unlock()
p.max += delta
if p.max == 0 {
p.empty()
return
}
if p.capacityChange != nil {
close(p.capacityChange)
}
p.capacityChange = make(chan struct{}, p.max)
origAllocations := p.allocations
p.allocations = make(chan struct{}, p.max)
newAllocs := len(origAllocations) + delta
for i := 0; i < newAllocs; i++ {
p.allocations <- struct{}{}
}
if origAllocations != nil {
close(origAllocations)
}
origSlices := p.slices
p.slices = make(chan *[]byte, p.max)
if origSlices == nil {
return
}
close(origSlices)
for bs := range origSlices {
select {
case p.slices <- bs:
default:
// If the new channel blocks while adding slices from the old channel
// then we drop the slice. The logic here is to prevent a deadlock situation
// if the new channel has a smaller capacity then the old.
}
}
}
func (p *maxSlicePool) notifyCapacity() {
select {
case p.capacityChange <- struct{}{}:
default:
// This *shouldn't* happen as the channel is both buffered to the max pool capacity size and is resized
// on capacity modifications. This is just a safety to ensure that a blocking situation can't occur.
}
}
func (p *maxSlicePool) SliceSize() int64 {
return p.sliceSize
}
func (p *maxSlicePool) Close() {
p.mtx.Lock()
defer p.mtx.Unlock()
p.empty()
}
func (p *maxSlicePool) empty() {
p.max = 0
if p.capacityChange != nil {
close(p.capacityChange)
p.capacityChange = nil
}
if p.allocations != nil {
close(p.allocations)
for range p.allocations {
// drain channel
}
p.allocations = nil
}
if p.slices != nil {
close(p.slices)
for range p.slices {
// drain channel
}
p.slices = nil
}
}
func (p *maxSlicePool) newSlice() *[]byte {
bs := make([]byte, p.sliceSize)
return &bs
}
type returnCapacityPoolCloser struct {
byteSlicePool
returnCapacity int
}
func (n *returnCapacityPoolCloser) ModifyCapacity(delta int) {
if delta > 0 {
n.returnCapacity = -1 * delta
}
n.byteSlicePool.ModifyCapacity(delta)
}
func (n *returnCapacityPoolCloser) Close() {
if n.returnCapacity < 0 {
n.byteSlicePool.ModifyCapacity(n.returnCapacity)
}
}
type sliceAllocator func() *[]byte
var newByteSlicePool = func(sliceSize int64) byteSlicePool {
return newMaxSlicePool(sliceSize)
}