Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error run with GPU #4

Open
SeekPoint opened this issue Nov 19, 2016 · 0 comments
Open

Error run with GPU #4

SeekPoint opened this issue Nov 19, 2016 · 0 comments

Comments

@SeekPoint
Copy link

rzai@rzai00:/prj/RNNLG$
rzai@rzai00:
/prj/RNNLG$ CUDA_VISIBLE_DEVICES=1 python main.py -config config/sclstm.cfg -mode train
Using gpu device 0: GeForce GTX 1080 (CNMeM is disabled)

init net from scrach ...
loading settings from config file ...
loading file path from config file ...

Data statistics

Train: 3114
Valid: 1039
Test : 1039
Feat : 200

setting network structures using theano variables ...
setting recurrent generator, type: sclstm ...
number of parameters : 254356
this may take up to several minutes ...
1 #include <Python.h>
2 #include
3 #include "theano_mod_helper.h"
4 #include "cuda_ndarray.cuh"
5 #include "cudnn.h"
6 #include "cudnn_helper.h"
7 //////////////////////
8 //// Support Code
9 //////////////////////
10
11
12 static cudnnHandle_t _handle = NULL;
13
14
15 static int
16 c_set_tensorNd(CudaNdarray var, cudnnTensorDescriptor_t desc) {
17
18
19 int dim = CudaNdarray_NDIM(var);
20 int strides[dim];
21 int default_str = 1;
22
23 for (int i = dim-1; i >= 0; i--)
24 {
25 if (CudaNdarray_HOST_STRIDES(var)[i])
26 strides[i] = CudaNdarray_HOST_STRIDES(var)[i];
27 else
28 strides[i] = default_str;
29 default_str = CudaNdarray_HOST_DIMS(var)[i];
30 }
31
32 cudnnStatus_t err = cudnnSetTensorNdDescriptor(desc, CUDNN_DATA_FLOAT, dim,
33 CudaNdarray_HOST_DIMS(var),
34 strides);
35 if (err != CUDNN_STATUS_SUCCESS) {
36 PyErr_Format(PyExc_RuntimeError,
37 "Could not set tensorNd descriptor: %s"
38 "dim=%d",
39 cudnnGetErrorString(err), dim);
40 return -1;
41 }
42 return 0;
43 }
44
45
46 static int
47 c_set_filterNd(CudaNdarray var, cudnnFilterDescriptor_t desc) {
48 if (!CudaNdarray_is_c_contiguous(var)) {
49 PyErr_SetString(PyExc_ValueError,
50 "Only contiguous filters (kernels) are supported.");
51 return -1;
52 }
53 int dim = CudaNdarray_NDIM(var);
54 cudnnStatus_t err = cudnnSetFilterNdDescriptor(desc, CUDNN_DATA_FLOAT, dim,
55 CudaNdarray_HOST_DIMS(var));
56 if (err != CUDNN_STATUS_SUCCESS) {
57 PyErr_Format(PyExc_RuntimeError,
58 "Could not set filter descriptor: %s."
59 " dims= %d",
60 cudnnGetErrorString(err), dim);
61 return -1;
62 }
63 return 0;
64 }
65
66
67
68 namespace {
69 struct __struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e {
70 PyObject
__ERROR;
71
72 PyObject
storage_V3;
73 PyObject
storage_V1;
74
75 cudnnTensorDescriptor_t softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0;
76
77 cudnnTensorDescriptor_t softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0;
78
79
80 __struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e() {}
81 ~__struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e(void) {
82 cleanup();
83 }
84
85 int init(PyObject* __ERROR, PyObject* storage_V3, PyObject* storage_V1) {
86 Py_XINCREF(storage_V3);
87 Py_XINCREF(storage_V1);
88 this->storage_V3 = storage_V3;
89 this->storage_V1 = storage_V1;
90
91
92
93
94 cudnnStatus_t errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0;
95
96 softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = NULL;
97 if ((errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = cudnnCreateTensorDescriptor(&softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0)) != CUDNN_STATUS_SUCCESS) {
98 PyErr_Format(PyExc_MemoryError, "could not allocate tensor descriptor "
99 ": %s", cudnnGetErrorString(errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0));
100 {
101 if (!PyErr_Occurred()) {
102 PyErr_SetString(PyExc_RuntimeError,
103 "Unexpected error in an Op's C code. "
104 "No Python exception was set.");
105 }
106 return 5;
107 }
108 }
109
110 softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = NULL;
111 if ((errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = cudnnCreateTensorDescriptor(&softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0)) != CUDNN_STATUS_SUCCESS) {
112 PyErr_Format(PyExc_MemoryError, "could not allocate tensor descriptor "
113 ": %s", cudnnGetErrorString(errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0));
114 {
115 if (!PyErr_Occurred()) {
116 PyErr_SetString(PyExc_RuntimeError,
117 "Unexpected error in an Op's C code. "
118 "No Python exception was set.");
119 }
120 return 5;
121 }
122 }
123
124 this->__ERROR = __ERROR;
125 return 0;
126 }
127 void cleanup(void) {
128 __label_1:
129
130 double __DUMMY_1;
131 __label_3:
132
133 double __DUMMY_3;
134 __label_6:
135
136 if(softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0!= NULL)
137 cudnnDestroyTensorDescriptor(softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0);
138
139 if(softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0!= NULL)
140 cudnnDestroyTensorDescriptor(softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0);
141
142 double __DUMMY_6;
143
144 Py_XDECREF(this->storage_V3);
145 Py_XDECREF(this->storage_V1);
146 }
147 int run(void) {
148 int __failure = 0;
149
150 PyObject* py_V1;
151 CudaNdarray * V1;
152 PyObject* py_V3;
153 CudaNdarray * V3;
154 {
155
156 py_V1 = PyList_GET_ITEM(storage_V1, 0);
157 {Py_XINCREF(py_V1);}
158
159 if (py_V1 == Py_None)
160 {
161 V1 = NULL;
162 }
163 else
164 {
165
166 assert(py_V1->ob_refcnt >= 2); // There should be at least one ref from the container object,
167 // and one ref from the local scope.
168
169 if (CudaNdarray_Check(py_V1))
170 {
171 //fprintf(stderr, "c_extract CNDA object w refcnt %p %i\n", py_V1, (py_V1->ob_refcnt));
172 V1 = (CudaNdarray*)py_V1;
173 //std::cerr << "c_extract " << V1 << '\n';
174
175
176 if (V1->nd != 4)
177 {
178 PyErr_Format(PyExc_RuntimeError,
179 "c_extract: Some CudaNdarray has rank %i, it was supposed to have rank 4",
180 V1->nd);
181 V1 = NULL;
182 {
183 __failure = 2;
184 if (!PyErr_Occurred()) {
185 PyErr_SetString(PyExc_RuntimeError,
186 "Unexpected error in an Op's C code. "
187 "No Python exception was set.");
188 }
189 goto __label_2;};
190 }
191 //std::cerr << "c_extract " << V1 << " nd check passed\n";
192
193
194 assert(V1);
195 Py_INCREF(py_V1);
196 }
197 else if (py_V1 == Py_None)
198 {
199 PyErr_SetString(PyExc_TypeError,
200 "expected a CudaNdarray, not None");
201 V1 = NULL;
202 {
203 __failure = 2;
204 if (!PyErr_Occurred()) {
205 PyErr_SetString(PyExc_RuntimeError,
206 "Unexpected error in an Op's C code. "
207 "No Python exception was set.");
208 }
209 goto __label_2;};
210 }
211 else
212 {
213 //fprintf(stderr, "FAILING c_extract CNDA object w refcnt %p %i\n", py_V1, (py_V1->ob_refcnt));
214 PyErr_SetString(PyExc_TypeError, "Argument not a CudaNdarray");
215 V1 = NULL;
216 {
217 __failure = 2;
218 if (!PyErr_Occurred()) {
219 PyErr_SetString(PyExc_RuntimeError,
220 "Unexpected error in an Op's C code. "
221 "No Python exception was set.");
222 }
223 goto __label_2;};
224 }
225 //std::cerr << "c_extract done " << V1 << '\n';
226
227
228 }
229
230 {
231
232 py_V3 = PyList_GET_ITEM(storage_V3, 0);
233 {Py_XINCREF(py_V3);}
234
235 assert(py_V3->ob_refcnt >= 2); // There should be at least one ref from the container object,
236 // and one ref from the local scope.
237
238 if (CudaNdarray_Check(py_V3))
239 {
240 //fprintf(stderr, "c_extract CNDA object w refcnt %p %i\n", py_V3, (py_V3->ob_refcnt));
241 V3 = (CudaNdarray*)py_V3;
242 //std::cerr << "c_extract " << V3 << '\n';
243
244
245 if (V3->nd != 4)
246 {
247 PyErr_Format(PyExc_RuntimeError,
248 "c_extract: Some CudaNdarray has rank %i, it was supposed to have rank 4",
249 V3->nd);
250 V3 = NULL;
251 {
252 __failure = 4;
253 if (!PyErr_Occurred()) {
254 PyErr_SetString(PyExc_RuntimeError,
255 "Unexpected error in an Op's C code. "
256 "No Python exception was set.");
257 }
258 goto __label_4;};
259 }
260 //std::cerr << "c_extract " << V3 << " nd check passed\n";
261
262
263 assert(V3);
264 Py_INCREF(py_V3);
265 }
266 else if (py_V3 == Py_None)
267 {
268 PyErr_SetString(PyExc_TypeError,
269 "expected a CudaNdarray, not None");
270 V3 = NULL;
271 {
272 __failure = 4;
273 if (!PyErr_Occurred()) {
274 PyErr_SetString(PyExc_RuntimeError,
275 "Unexpected error in an Op's C code. "
276 "No Python exception was set.");
277 }
278 goto __label_4;};
279 }
280 else
281 {
282 //fprintf(stderr, "FAILING c_extract CNDA object w refcnt %p %i\n", py_V3, (py_V3->ob_refcnt));
283 PyErr_SetString(PyExc_TypeError, "Argument not a CudaNdarray");
284 V3 = NULL;
285 {
286 __failure = 4;
287 if (!PyErr_Occurred()) {
288 PyErr_SetString(PyExc_RuntimeError,
289 "Unexpected error in an Op's C code. "
290 "No Python exception was set.");
291 }
292 goto __label_4;};
293 }
294 //std::cerr << "c_extract done " << V3 << '\n';
295
296
297 {
298 // Op class GpuDnnSoftmax
299
300 cudnnStatus_t errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0;
301 cudnnTensorFormat_t formatnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = CUDNN_TENSOR_NCHW;
302 if (0 == 1)
303 formatnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = CUDNN_TENSOR_NHWC;
304
305 cudnnSoftmaxAlgorithm_t algonode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = CUDNN_SOFTMAX_ACCURATE;
306
307 cudnnSoftmaxMode_t modenode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = CUDNN_SOFTMAX_MODE_CHANNEL;
308 if (0 == 1)
309 modenode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = CUDNN_SOFTMAX_MODE_INSTANCE;
310
311 {
312 int str0, str1, str2, str3;
313 str3 = CudaNdarray_HOST_STRIDES(V3)[3]?CudaNdarray_HOST_STRIDES(V3)[3]:1;
314 str2 = CudaNdarray_HOST_STRIDES(V3)[2]?CudaNdarray_HOST_STRIDES(V3)[2]:CudaNdarray_HOST_DIMS(V3)[3];
315 str1 = CudaNdarray_HOST_STRIDES(V3)[1]?CudaNdarray_HOST_STRIDES(V3)[1]:CudaNdarray_HOST_DIMS(V3)[2]CudaNdarray_HOST_DIMS(V3)[3];
316 str0 = CudaNdarray_HOST_STRIDES(V3)[0]?CudaNdarray_HOST_STRIDES(V3)[0]:CudaNdarray_HOST_DIMS(V3)[2]CudaNdarray_HOST_DIMS(V3)[3]CudaNdarray_HOST_DIMS(V3)[1];
317 errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = cudnnSetTensor4dDescriptorEx(
318 softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0, CUDNN_DATA_FLOAT,
319 CudaNdarray_HOST_DIMS(V3)[0],
320 CudaNdarray_HOST_DIMS(V3)[1],
321 CudaNdarray_HOST_DIMS(V3)[2],
322 CudaNdarray_HOST_DIMS(V3)[3],
323 str0, str1, str2, str3
324 );
325 if (errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 != CUDNN_STATUS_SUCCESS) {
326 PyErr_Format(PyExc_RuntimeError,
327 "could not set tensor4d descriptor: %s"
328 "shapes=%d %d %d %d strides=%d %d %d %d",
329 cudnnGetErrorString(errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0),
330 CudaNdarray_HOST_DIMS(V3)[0],
331 CudaNdarray_HOST_DIMS(V3)[1],
332 CudaNdarray_HOST_DIMS(V3)[2],
333 CudaNdarray_HOST_DIMS(V3)[3],
334 str0, str1, str2, str3
335 );
336 {
337 __failure = 5;
338 if (!PyErr_Occurred()) {
339 PyErr_SetString(PyExc_RuntimeError,
340 "Unexpected error in an Op's C code. "
341 "No Python exception was set.");
342 }
343 goto __label_5;}
344 }
345 }
346
347
348 if (CudaNdarray_prep_output(&V1, 4, CudaNdarray_HOST_DIMS(V3)) != 0)
349 {
350 {
351 __failure = 5;
352 if (!PyErr_Occurred()) {
353 PyErr_SetString(PyExc_RuntimeError,
354 "Unexpected error in an Op's C code. "
355 "No Python exception was set.");
356 }
357 goto __label_5;}
358 }
359
360 {
361 int str0, str1, str2, str3;
362 str3 = CudaNdarray_HOST_STRIDES(V1)[3]?CudaNdarray_HOST_STRIDES(V1)[3]:1;
363 str2 = CudaNdarray_HOST_STRIDES(V1)[2]?CudaNdarray_HOST_STRIDES(V1)[2]:CudaNdarray_HOST_DIMS(V1)[3];
364 str1 = CudaNdarray_HOST_STRIDES(V1)[1]?CudaNdarray_HOST_STRIDES(V1)[1]:CudaNdarray_HOST_DIMS(V1)[2]CudaNdarray_HOST_DIMS(V1)[3];
365 str0 = CudaNdarray_HOST_STRIDES(V1)[0]?CudaNdarray_HOST_STRIDES(V1)[0]:CudaNdarray_HOST_DIMS(V1)[2]CudaNdarray_HOST_DIMS(V1)[3]CudaNdarray_HOST_DIMS(V1)[1];
366 errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = cudnnSetTensor4dDescriptorEx(
367 softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0, CUDNN_DATA_FLOAT,
368 CudaNdarray_HOST_DIMS(V1)[0],
369 CudaNdarray_HOST_DIMS(V1)[1],
370 CudaNdarray_HOST_DIMS(V1)[2],
371 CudaNdarray_HOST_DIMS(V1)[3],
372 str0, str1, str2, str3
373 );
374 if (errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 != CUDNN_STATUS_SUCCESS) {
375 PyErr_Format(PyExc_RuntimeError,
376 "could not set tensor4d descriptor: %s"
377 "shapes=%d %d %d %d strides=%d %d %d %d",
378 cudnnGetErrorString(errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0),
379 CudaNdarray_HOST_DIMS(V1)[0],
380 CudaNdarray_HOST_DIMS(V1)[1],
381 CudaNdarray_HOST_DIMS(V1)[2],
382 CudaNdarray_HOST_DIMS(V1)[3],
383 str0, str1, str2, str3
384 );
385 {
386 __failure = 5;
387 if (!PyErr_Occurred()) {
388 PyErr_SetString(PyExc_RuntimeError,
389 "Unexpected error in an Op's C code. "
390 "No Python exception was set.");
391 }
392 goto __label_5;}
393 }
394 }
395
396
397 #ifndef CUDNN_VERSION
398 errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = cudnnSoftmaxForward(
399 _handle,
400 algonode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
401 modenode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
402 softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
403 CudaNdarray_DEV_DATA(V3),
404 softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
405 CudaNdarray_DEV_DATA(V1)
406 );
407 #else
408 {
409 const float alpha = 1.;
410 const float beta = 0.;
411 errnode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0 = cudnnSoftmaxForward(
412 _handle,
413 algonode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
414 modenode_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
415 (void
) &alpha,
416 softmax_input_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
417 CudaNdarray_DEV_DATA(V3),
418 (void
) &beta,
419 softmax_output_node_e4b7b2bc7fd903d81ee9c46ba97aa65e_0,
420 CudaNdarray_DEV_DATA(V1)
421 );
422 }
423 #endif
424 __label_5:
425
426 double __DUMMY_5;
427
428 }
429 __label_4:
430
431 //std::cerr << "cleanup " << py_V3 << " " << V3 << "\n";
432 //fprintf(stderr, "c_cleanup CNDA py_object w refcnt %p %i\n", py_V3, (py_V3->ob_refcnt));
433 if (V3)
434 {
435 //fprintf(stderr, "c_cleanup CNDA cn_object w refcnt %p %i\n", V3, (V3->ob_refcnt));
436 Py_XDECREF(V3);
437 }
438 //std::cerr << "cleanup done" << py_V3 << "\n";
439
440 {Py_XDECREF(py_V3);}
441
442 double __DUMMY_4;
443
444 }
445 __label_2:
446
447 if (!__failure) {
448
449 //std::cerr << "sync\n";
450 if (NULL == V1) {
451 // failure: sync None to storage
452 Py_XDECREF(py_V1);
453 py_V1 = Py_None;
454 Py_INCREF(py_V1);
455 }
456 else
457 {
458 if (py_V1 != (PyObject
)V1)
459 {
460 Py_XDECREF(py_V1);
461 py_V1 = (PyObject
)V1;
462 Py_INCREF(py_V1);
463 }
464 assert(py_V1->ob_refcnt);
465 }
466
467 PyObject
old = PyList_GET_ITEM(storage_V1, 0);
468 {Py_XINCREF(py_V1);}
469 PyList_SET_ITEM(storage_V1, 0, py_V1);
470 {Py_XDECREF(old);}
471 }
472
473 //std::cerr << "cleanup " << py_V1 << " " << V1 << "\n";
474 //fprintf(stderr, "c_cleanup CNDA py_object w refcnt %p %i\n", py_V1, (py_V1->ob_refcnt));
475 if (V1)
476 {
477 //fprintf(stderr, "c_cleanup CNDA cn_object w refcnt %p %i\n", V1, (V1->ob_refcnt));
478 Py_XDECREF(V1);
479 }
480 //std::cerr << "cleanup done" << py_V1 << "\n";
481
482 {Py_XDECREF(py_V1);}
483
484 double __DUMMY_2;
485
486 }
487
488
489 if (__failure) {
490 // When there is a failure, this code puts the exception
491 // in __ERROR.
492 PyObject
err_type = NULL;
493 PyObject* err_msg = NULL;
494 PyObject* err_traceback = NULL;
495 PyErr_Fetch(&err_type, &err_msg, &err_traceback);
496 if (!err_type) {err_type = Py_None;Py_INCREF(Py_None);}
497 if (!err_msg) {err_msg = Py_None; Py_INCREF(Py_None);}
498 if (!err_traceback) {err_traceback = Py_None; Py_INCREF(Py_None);}
499 PyObject* old_err_type = PyList_GET_ITEM(__ERROR, 0);
500 PyObject* old_err_msg = PyList_GET_ITEM(__ERROR, 1);
501 PyObject* old_err_traceback = PyList_GET_ITEM(__ERROR, 2);
502 PyList_SET_ITEM(__ERROR, 0, err_type);
503 PyList_SET_ITEM(__ERROR, 1, err_msg);
504 PyList_SET_ITEM(__ERROR, 2, err_traceback);
505 {Py_XDECREF(old_err_type);}
506 {Py_XDECREF(old_err_msg);}
507 {Py_XDECREF(old_err_traceback);}
508 }
509 // The failure code is returned to index what code block failed.
510 return __failure;
511
512 }
513 };
514 }
515
516
517 static int __struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e_executor(__struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e* self) {
518 return self->run();
519 }
520
521 static void __struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e_destructor(void* executor, void* self) {
522 delete ((__struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e*)self);
523 }
524
525 //////////////////////
526 //// Functions
527 //////////////////////
528 static PyObject * instantiate(PyObject * self, PyObject argtuple) {
529 assert(PyTuple_Check(argtuple));
530 if (3 != PyTuple_Size(argtuple)){
531 PyErr_Format(PyExc_TypeError, "Wrong number of arguments, expected 3, got %i", (int)PyTuple_Size(argtuple));
532 return NULL;
533 }
534 __struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e
struct_ptr = new __struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e();
535 if (struct_ptr->init( PyTuple_GET_ITEM(argtuple, 0),PyTuple_GET_ITEM(argtuple, 1),PyTuple_GET_ITEM(argtuple, 2) ) != 0) {
536 delete struct_ptr;
537 return NULL;
538 }
539 PyObject* thunk = PyCObject_FromVoidPtrAndDesc((void*)(&__struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e_executor), struct_ptr, __struct_compiled_op_e4b7b2bc7fd903d81ee9c46ba97aa65e_destructor);
540 return thunk; }
541
542 //////////////////////
543 //// Module init
544 //////////////////////
545 static PyMethodDef MyMethods[] = {
546 {"instantiate", instantiate, METH_VARARGS, "undocumented"} ,
547 {NULL, NULL, 0, NULL}
548 };
549 PyMODINIT_FUNC inite4b7b2bc7fd903d81ee9c46ba97aa65e(void){
550
551
552 {
553 cudnnStatus_t err;
554 if ((err = cudnnCreate(&_handle)) != CUDNN_STATUS_SUCCESS) {
555 PyErr_Format(PyExc_RuntimeError, "could not create cuDNN handle: %s",
556 cudnnGetErrorString(err));
557 #if PY_MAJOR_VERSION >= 3
558 return NULL;
559 #else
560 return;
561 #endif
562 }
563 }
564
565 (void) Py_InitModule("e4b7b2bc7fd903d81ee9c46ba97aa65e", MyMethods);
566 }
567

mod.cu(54): error: argument of type "int" is incompatible with parameter of type "cudnnTensorFormat_t"
mod.cu(55): error: argument of type "const int *" is incompatible with parameter of type "int"
mod.cu(55): error: too few arguments in function call
mod.cu(16): warning: function "c_set_tensorNd" was declared but never referenced
mod.cu(47): warning: function "c_set_filterNd" was declared but never referenced
3 errors detected in the compilation of "/tmp/tmpxft_0000484e_00000000-9_mod.cpp1.ii".

['nvcc', '-shared', '-O3', '-use_fast_math', '-arch=sm_61', '-m64', '-Xcompiler', '-fno-math-errno,-Wno-unused-label,-Wno-unused-variable,-Wno-write-strings,-DCUDA_NDARRAY_CUH=c72d035fdf91890f3b36710688069b2e,-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION,-fPIC,-fvisibility=hidden', '-Xlinker', '-rpath,/home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/cuda_ndarray', '-I/home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/cuda_ndarray', '-I/usr/local/cuda-8.0/include', '-I/usr/local/lib/python2.7/dist-packages/theano/sandbox/cuda', '-I/home/rzai/.local/lib/python2.7/site-packages/numpy/core/include', '-I/usr/include/python2.7', '-I/usr/local/lib/python2.7/dist-packages/theano/gof', '-o', '/home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/tmpVX7VDI/e4b7b2bc7fd903d81ee9c46ba97aa65e.so', 'mod.cu', '-L/home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/cuda_ndarray', '-L/usr/lib', '-lpython2.7', '-lcudart', '-lcublas', '-lcuda_ndarray', '-lcudnn']
Traceback (most recent call last):
File "main.py", line 33, in
model = Model(config,args)
File "/home/rzai/prj/RNNLG/generator/net.py", line 73, in init
self.initNet(config,opts)
File "/home/rzai/prj/RNNLG/generator/net.py", line 132, in initNet
self.model.config_theano()
File "/home/rzai/prj/RNNLG/nn/NNGenerator.py", line 91, in config_theano
on_unused_input='ignore')
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function.py", line 316, in function
output_keys=output_keys)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/pfunc.py", line 523, in pfunc
output_keys=output_keys)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 1526, in orig_function
defaults)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 1390, in create
input_storage=input_storage_lists)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/link.py", line 607, in make_thunk
output_storage=output_storage)[:3]
File "/usr/local/lib/python2.7/dist-packages/theano/gof/vm.py", line 1025, in make_all
no_recycling))
File "/usr/local/lib/python2.7/dist-packages/theano/scan_module/scan_op.py", line 757, in make_thunk
on_unused_input='ignore')
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function.py", line 316, in function
output_keys=output_keys)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/pfunc.py", line 523, in pfunc
output_keys=output_keys)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 1526, in orig_function
defaults)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 1390, in create
input_storage=input_storage_lists)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/link.py", line 607, in make_thunk
output_storage=output_storage)[:3]
File "/usr/local/lib/python2.7/dist-packages/theano/gof/vm.py", line 1025, in make_all
no_recycling))
File "/usr/local/lib/python2.7/dist-packages/theano/sandbox/cuda/init.py", line 279, in make_thunk
compute_map, no_recycling)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/op.py", line 807, in make_thunk
no_recycling)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/op.py", line 733, in make_c_thunk
output_storage=node_output_storage)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/cc.py", line 1065, in make_thunk
keep_lock=keep_lock)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/cc.py", line 1007, in compile
keep_lock=keep_lock)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/cc.py", line 1435, in cthunk_factory
key=key, lnk=self, keep_lock=keep_lock)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/cmodule.py", line 1094, in module_from_key
module = lnk.compile_cmodule(location)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/cc.py", line 1347, in compile_cmodule
preargs=preargs)
File "/usr/local/lib/python2.7/dist-packages/theano/sandbox/cuda/nvcc_compiler.py", line 429, in compile_str
'for cmd', ' '.join(cmd))
Exception: ('The following error happened while compiling the node', forall_inplace,gpu,scan_fn&scan_fn}(Elemwise{minimum,no_inplace}.0, Subtensor{int64:int64:int64}.0, Subtensor{int64:int64:int64}.0, GpuIncSubtensor{InplaceSet;:int64:}.0, GpuIncSubtensor{InplaceSet;:int64:}.0, GpuIncSubtensor{InplaceSet;:int64:}.0, GpuIncSubtensor{InplaceSet;:int64:}.0, GpuIncSubtensor{InplaceSet;:int64:}.0, GpuIncSubtensor{InplaceSet;:int64:}.0, Elemwise{minimum,no_inplace}.0, Elemwise{minimum,no_inplace}.0, <CudaNdarrayType(float32, matrix)>, <CudaNdarrayType(float32, matrix)>, <CudaNdarrayType(float32, matrix)>, <CudaNdarrayType(float32, matrix)>, <CudaNdarrayType(float32, matrix)>, <CudaNdarrayType(float32, matrix)>, for{gpu,scan_fn}.0), '\n', 'The following error happened while compiling the node', GpuDnnSoftmax{tensor_format='bc01', mode='channel', algo='accurate'}(GpuContiguous.0), '\n', 'nvcc return status', 2, 'for cmd', 'nvcc -shared -O3 -use_fast_math -arch=sm_61 -m64 -Xcompiler -fno-math-errno,-Wno-unused-label,-Wno-unused-variable,-Wno-write-strings,-DCUDA_NDARRAY_CUH=c72d035fdf91890f3b36710688069b2e,-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION,-fPIC,-fvisibility=hidden -Xlinker -rpath,/home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/cuda_ndarray -I/home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/cuda_ndarray -I/usr/local/cuda-8.0/include -I/usr/local/lib/python2.7/dist-packages/theano/sandbox/cuda -I/home/rzai/.local/lib/python2.7/site-packages/numpy/core/include -I/usr/include/python2.7 -I/usr/local/lib/python2.7/dist-packages/theano/gof -o /home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/tmpVX7VDI/e4b7b2bc7fd903d81ee9c46ba97aa65e.so mod.cu -L/home/rzai/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-14.04-trusty-x86_64-2.7.6-64/cuda_ndarray -L/usr/lib -lpython2.7 -lcudart -lcublas -lcuda_ndarray -lcudnn', "[GpuDnnSoftmax{tensor_format='bc01', mode='channel', algo='accurate'}(<CudaNdarrayType(float32, (False, False, True, True))>)]")
rzai@rzai00:/prj/RNNLG$
rzai@rzai00:
/prj/RNNLG$

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant