-
Notifications
You must be signed in to change notification settings - Fork 1
/
tmp.py
351 lines (345 loc) · 12.3 KB
/
tmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# import os
# import shutil
# import pandas as pd
# from tqdm import tqdm
#
#
# def mkdirs(path):
# path = path.strip()
# # 去除尾部 \ 符号
# path = path.rstrip("\\")
# is_exists = os.path.exists(path)
#
# if not is_exists:
# os.makedirs(path)
# # 如果不存在则创建目录
# print(path + ' 创建成功')
# else:
# # 如果目录存在则不创建,并提示目录已存在
# print(path + ' 目录已存在')
#
# return
#
#
# def divide_files(root_path, stay_ids):
# train_file_path = os.path.join(root_path, 'train_data')
# test_file_path = os.path.join(root_path, 'test_data')
# mkdirs(train_file_path)
# mkdirs(test_file_path)
# raw_file_path = os.path.join(root_path, 'raw_data/41401')
# for file in tqdm(os.listdir(raw_file_path)):
# patient_id = int(file.split('_')[1])
# if patient_id in stay_ids:
# shutil.copy(os.path.join(raw_file_path, file), test_file_path)
# else:
# shutil.copy(os.path.join(raw_file_path, file), train_file_path)
#
#
# if __name__ == '__main__':
# stay_ids = pd.read_csv('data/41401_predict_icustay.csv', sep=',')
# ids = stay_ids['icustay_id'].values.tolist()
# ids = set(ids)
# divide_files('data', ids)
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# from torch.autograd import *
# import numpy as np
# from torch.nn.parameter import Parameter
#
#
# class embedding(nn.Module):
#
# def __init__(self, vocab_size, num_units, zeros_pad=True, scale=True):
# '''Embeds a given Variable.
# Args:
# vocab_size: An int. Vocabulary size.
# num_units: An int. Number of embedding hidden units.
# zero_pad: A boolean. If True, all the values of the fist row (id 0)
# should be constant zeros.
# scale: A boolean. If True. the outputs is multiplied by sqrt num_units.
# '''
# super(embedding, self).__init__()
# self.vocab_size = vocab_size
# self.num_units = num_units
# self.zeros_pad = zeros_pad
# self.scale = scale
# self.lookup_table = Parameter(torch.Tensor(vocab_size, num_units))
# nn.init.xavier_normal(self.lookup_table.data)
# if self.zeros_pad:
# self.lookup_table.data[0, :].fill_(0)
#
# def forward(self, inputs):
# if self.zeros_pad:
# self.padding_idx = 0
# else:
# self.padding_idx = -1
# outputs = self._backend.Embedding.apply(
# inputs, self.lookup_table, self.padding_idx, None, 2, False,
# False) # copied from torch.nn.modules.sparse.py
#
# if self.scale:
# outputs = outputs * (self.num_units ** 0.5)
#
# return outputs
#
#
# class layer_normalization(nn.Module):
#
# def __init__(self, features, epsilon=1e-8):
# '''Applies layer normalization.
# Args:
# epsilon: A floating number. A very small number for preventing ZeroDivision Error.
# '''
# super(layer_normalization, self).__init__()
# self.epsilon = epsilon
# self.gamma = nn.Parameter(torch.ones(features))
# self.beta = nn.Parameter(torch.zeros(features))
#
# def forward(self, x):
# mean = x.mean(-1, keepdim=True)
# std = x.std(-1, keepdim=True)
# return self.gamma * (x - mean) / (std + self.epsilon) + self.beta
#
#
# class positional_encoding(nn.Module):
#
# def __init__(self, num_units, zeros_pad=True, scale=True):
# '''Sinusoidal Positional_Encoding.
# Args:
# num_units: Output dimensionality
# zero_pad: Boolean. If True, all the values of the first row (id = 0) should be constant zero
# scale: Boolean. If True, the output will be multiplied by sqrt num_units(check details from paper)
# '''
# super(positional_encoding, self).__init__()
# self.num_units = num_units
# self.zeros_pad = zeros_pad
# self.scale = scale
#
# def forward(self, inputs):
# # inputs: A 2d Tensor with shape of (N, T).
# N, T = inputs.size()[0: 2]
#
# # First part of the PE function: sin and cos argument
# position_ind = Variable(torch.unsqueeze(torch.arange(0, T), 0).repeat(N, 1).long())
# position_enc = torch.Tensor([
# [pos / np.power(10000, 2. * i / self.num_units) for i in range(self.num_units)]
# for pos in range(T)])
#
# # Second part, apply the cosine to even columns and sin to odds.
# position_enc[:, 0::2] = torch.sin(position_enc[:, 0::2]) # dim 2i
# position_enc[:, 1::2] = torch.cos(position_enc[:, 1::2]) # dim 2i+1
#
# # Convert to a Variable
# lookup_table = Variable(position_enc)
#
# if self.zeros_pad:
# lookup_table = torch.cat((Variable(torch.zeros(1, self.num_units)),
# lookup_table[1:, :]), 0)
# padding_idx = 0
# else:
# padding_idx = -1
#
# outputs = self._backend.Embedding.apply(
# position_ind, lookup_table, padding_idx, None, 2, False, False) # copied from torch.nn.modules.sparse.py
#
# if self.scale:
# outputs = outputs * self.num_units ** 0.5
#
# return outputs
#
#
# class multihead_attention(nn.Module):
#
# def __init__(self, num_units, num_heads=8, dropout_rate=0, causality=False):
# '''Applies multihead attention.
# Args:
# num_units: A scalar. Attention size.
# dropout_rate: A floating point number.
# causality: Boolean. If true, units that reference the future are masked.
# num_heads: An int. Number of heads.
# '''
# super(multihead_attention, self).__init__()
# self.num_units = num_units
# self.num_heads = num_heads
# self.dropout_rate = dropout_rate
# self.causality = causality
# self.Q_proj = nn.Sequential(nn.Linear(self.num_units, self.num_units), nn.ReLU())
# self.K_proj = nn.Sequential(nn.Linear(self.num_units, self.num_units), nn.ReLU())
# self.V_proj = nn.Sequential(nn.Linear(self.num_units, self.num_units), nn.ReLU())
#
# self.output_dropout = nn.Dropout(p=self.dropout_rate)
#
# self.normalization = layer_normalization(self.num_units)
#
# def forward(self, queries, keys, values):
# # keys, values: same shape of [N, T_k, C_k]
# # queries: A 3d Variable with shape of [N, T_q, C_q]
#
# # Linear projections
# Q = self.Q_proj(queries) # (N, T_q, C)
# K = self.K_proj(keys) # (N, T_q, C)
# V = self.V_proj(values) # (N, T_q, C)
#
# # Split and concat
# Q_ = torch.cat(torch.chunk(Q, self.num_heads, dim=2), dim=0) # (h*N, T_q, C/h)
# K_ = torch.cat(torch.chunk(K, self.num_heads, dim=2), dim=0) # (h*N, T_q, C/h)
# V_ = torch.cat(torch.chunk(V, self.num_heads, dim=2), dim=0) # (h*N, T_q, C/h)
#
# # Multiplication
# outputs = torch.bmm(Q_, K_.permute(0, 2, 1)) # (h*N, T_q, T_k)
#
# # Scale
# outputs = outputs / (K_.size()[-1] ** 0.5)
#
# # Key Masking
# key_masks = torch.sign(torch.abs(torch.sum(keys, dim=-1))) # (N, T_k)
# key_masks = key_masks.repeat(self.num_heads, 1) # (h*N, T_k)
# key_masks = torch.unsqueeze(key_masks, 1).repeat(1, queries.size()[1], 1) # (h*N, T_q, T_k)
#
# padding = Variable(torch.ones(*outputs.size()) * (-2 ** 32 + 1))
# condition = key_masks.eq(0.).float()
# outputs = padding * condition + outputs * (1. - condition)
#
# # Causality = Future blinding
# if self.causality:
# diag_vals = torch.ones(*outputs[0, :, :].size()) # (T_q, T_k)
# tril = torch.tril(diag_vals, diagonal=0) # (T_q, T_k)
# # print(tril)
# masks = Variable(torch.unsqueeze(tril, 0).repeat(outputs.size()[0], 1, 1)) # (h*N, T_q, T_k)
#
# padding = Variable(torch.ones(*masks.size()) * (-2 ** 32 + 1))
# condition = masks.eq(0.).float()
# outputs = padding * condition + outputs * (1. - condition)
#
# # Activation
# outputs = F.softmax(outputs, dim=-1) # (h*N, T_q, T_k)
#
# # Query Masking
# query_masks = torch.sign(torch.abs(torch.sum(queries, dim=-1))) # (N, T_q)
# query_masks = query_masks.repeat(self.num_heads, 1) # (h*N, T_q)
# query_masks = torch.unsqueeze(query_masks, 2).repeat(1, 1, keys.size()[1]) # (h*N, T_q, T_k)
# outputs = outputs * query_masks
#
# # Dropouts
# outputs = self.output_dropout(outputs) # (h*N, T_q, T_k)
#
# # Weighted sum
# outputs = torch.bmm(outputs, V_) # (h*N, T_q, C/h)
#
# # Restore shape
# outputs = torch.cat(torch.chunk(outputs, self.num_heads, dim=0), dim=2) # (N, T_q, C)
#
# # Residual connection
# outputs += queries
#
# # Normalize
# outputs = self.normalization(outputs) # (N, T_q, C)
#
# return outputs
#
#
# class feedforward(nn.Module):
#
# def __init__(self, in_channels, num_units=[1024, 512]):
# '''Point-wise feed forward net.
# Args:
# in_channels: a number of channels of inputs
# num_units: A list of two integers.
# '''
# super(feedforward, self).__init__()
# self.in_channels = in_channels
# self.num_units = num_units
#
# # nn.Linear is faster than nn.Conv1d
# self.conv = False
# if self.conv:
# params = {'in_channels': self.in_channels, 'out_channels': self.num_units[0],
# 'kernel_size': 1, 'stride': 1, 'bias': True}
# self.conv1 = nn.Sequential(nn.Conv1d(**params), nn.ReLU())
# params = {'in_channels': self.num_units[0], 'out_channels': self.num_units[1],
# 'kernel_size': 1, 'stride': 1, 'bias': True}
# self.conv2 = nn.Conv1d(**params)
# else:
# self.conv1 = nn.Sequential(nn.Linear(self.in_channels, self.num_units[0]), nn.ReLU())
# self.conv2 = nn.Linear(self.num_units[0], self.num_units[1])
# self.normalization = layer_normalization(self.in_channels)
#
# def forward(self, inputs):
# if self.conv:
# inputs = inputs.permute(0, 2, 1)
# outputs = self.conv1(inputs)
# outputs = self.conv2(outputs)
#
# # Residual connection
# outputs += inputs
#
# # Layer normalization
# if self.conv:
# outputs = self.normalization(outputs.permute(0, 2, 1))
# else:
# outputs = self.normalization(outputs)
#
# return outputs
#
#
# class label_smoothing(nn.Module):
#
# def __init__(self, epsilon=0.1):
# '''Applies label smoothing. See https://arxiv.org/abs/1512.00567.
# Args:
# epsilon: Smoothing rate.
# '''
# super(label_smoothing, self).__init__()
# self.epsilon = epsilon
#
# def forward(self, inputs):
# K = inputs.size()[-1]
# return ((1 - self.epsilon) * inputs) + (self.epsilon / K)
#
#
# if __name__ == '__main__':
# num_units = 512
# inputs = Variable(torch.randn((100, 10)))
# outputs = positional_encoding(num_units)(inputs)
# outputs = multihead_attention(num_units)(outputs, outputs, outputs)
# outputs = feedforward(num_units)(outputs)
#
# print(outputs)
# import numpy as np
# import tensorflow as tf
#
# t = 1
# T = 10
# M = 5
# W = np.zeros((T, M), dtype=np.float32)
# for t in range(1, T + 1):
# s = M * t / T
# for m in range(1, M + 1):
# w = pow(1 - abs(s - m) / M, 2)
# W[t - 1, m - 1] = w
#
# inp = np.random.rand(3, 10, 3)
#
#
# def body(l, L):
# # output[:, l-1, :] =
# print(tf.tile(tf.expand_dims(Weight[:l, :], 0), [3, 1, 1]))
# print(tf.shape(tf.matmul(encodes[:, :, :l], tf.tile(tf.expand_dims(Weight[:l, :], 0), [3, 1, 1]))))
# l = l + 1
# return l, L
#
#
# def condition(l, L):
# return l <= L
#
#
# output = tf.Variable(tf.random_uniform([3, 10, 15], -0.05, 0.05), dtype=tf.float32)
# encodes = tf.constant(inp, dtype=tf.float32)
# tf.transpose(encodes, [0, 2, 1])
# Weight = tf.constant(W, dtype=tf.float32)
#
# with tf.Session():
# tf.global_variables_initializer().run()
# result = tf.while_loop(condition, body, [t, T])
# print(result)