Skip to content

sjmoran/sparse-kernel-relevance-model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Sparse Kernel Relevance Model for Image Annotation

Current version: 0.1. Distributed under a Creative Commons Attribution-NonCommercial License: http://creativecommons.org/licenses/by-nc/4.0/deed.en_US

This code is a memory efficient implementation of the Continous Relevance Image Annotation Model. The code is memory frugal but disk heavy, enabling very large image datasets to be processed on machines with a modicum of RAM e.g. your laptop.

Sean Moran and Victor Lavrenko. A Sparse Kernel Relevance Model for Image Annotation. International Journal of Multimedia Information Retrieval, 2014

Prerequisites:

  1. Yari MTX library: see the compiled version (mtx) included with this distribution, or check out: http://ir.inf.ed.ac.uk/wiki/doku.php?id=yari:mtx
  2. Korn Shell: sudo apt-get install ksh
  3. CSH: sudo apt-get install csh

If you use the SKL-CRM code for a publication, please cite the following papers:

@article{year={2014}, 
issn={2192-6611}, 
journal={International Journal of Multimedia Information Retrieval}, 
doi={10.1007/s13735-014-0063-y}, 
title={A sparse kernel relevance model for automatic image annotation}, 
url={http://dx.doi.org/10.1007/s13735-014-0063-y}, 
publisher={Springer London}, 
keywords={Image annotation; Object recognition; Kernel density estimation}, author={Moran, Sean and Lavrenko, Victor}, 
pages={1-21},
language={English} }
@inproceedings{Moran:2014:SKL:2578726.2578734, 
author = {Moran, Sean and Lavrenko, Victor}, 
title = {Sparse Kernel Learning for Image Annotation}, 
booktitle = {Proceedings of International Conference on Multimedia Retrieval}, 
series = {ICMR '14}, 
year = {2014}, 
isbn = {978-1-4503-2782-4}, 
location = {Glasgow, United Kingdom}, 
pages = {113:113--113:120}, 
articleno = {113}, 
numpages = {8}, 
url = {http://doi.acm.org/10.1145/2578726.2578734}, 
doi = {10.1145/2578726.2578734}, 
acmid = {2578734}, 
publisher = {ACM}, 
address = {New York, NY, USA}, 
keywords = {Image Annotation, Statistical Models, Visual Features}, }

Usage

Obtain the pre-processed dataset files for Corel5K, IAPR-TC12 and ESPGame:

https://www.dropbox.com/sh/289zxx8teqpjyb0/AADTMR_flAlxbojykU4-8Onta?dl=0

These are simply the Tagprop features available for download at INRIA here:

http://lear.inrialpes.fr/people/guillaumin/data.php

But formatted in ROW-COLUMN-VALUE (RCV) format appropriate for loading into MTX

  1. Change the environment variables in the set_env_vars function in run_crm.ksh to values appropriate to your system

  2. Run the model: ./run_crm.ksh

Results are in res.log and on standard output. You should get the following results on the Corel5k testing dataset:

Results computed on 260.000000 words:                                                                                                                                         
MPR:  0.362088                                                                                                                                                                
MPP:  0.324235                                                                                                                                                                
F1:  0.3421                                                                                                                                                                   
Words recall > 0:  161.000000   

To replicate the SKL-CRM results change the kernels in initialise.sh to the optimal kernels specified in our journal paper. See the comments in initialise.sh for further guidance on how to do this.

Copyright

Copyright (C) by Sean Moran, University of Edinburgh

Please send any bug reports to sean.j.moran@gmail.com

Releases

No releases published

Packages

No packages published

Languages