forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 1
/
grad_node_info.cc
432 lines (391 loc) · 16.9 KB
/
grad_node_info.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/eager/grad_node_info.h"
#include "glog/logging.h"
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
/**
* Implementation of GradNodeBase, Edge and GradTensorHolder.
**/
namespace egr {
static void CheckTensor(const paddle::experimental::Tensor& pre,
const paddle::experimental::Tensor& post) {
if (!pre.initialized() && post.initialized()) {
PADDLE_THROW(paddle::platform::errors::PermissionDenied(
"The tensor in before and after hook are not consistent"));
}
if (pre.initialized() && post.initialized()) {
VLOG(4) << paddle::framework::DataType2String(pre.dtype()) << " "
<< paddle::framework::DataType2String(post.dtype());
PADDLE_ENFORCE_EQ(
pre.dtype(), post.dtype(),
paddle::platform::errors::PermissionDenied(
"The dtype of tensor before(%s) and after(%s) hook are not "
"consistent",
paddle::framework::DataType2String(pre.dtype()),
paddle::framework::DataType2String(post.dtype())));
PADDLE_ENFORCE_EQ(
pre.place(), post.place(),
paddle::platform::errors::PermissionDenied(
"The place of tensor before(%s) and after(%s) "
"hook are not consistent",
pre.place().DebugString(), post.place().DebugString()));
}
}
GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
VLOG(6) << "Construct GradNodeBase";
bwd_in_meta_.resize(bwd_in_slot_num);
bwd_out_meta_.resize(bwd_out_slot_num);
}
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::InputMeta() const {
return bwd_in_meta_;
}
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::OutputMeta() const {
return bwd_out_meta_;
}
paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::MutableOutputMeta() {
return bwd_out_meta_;
}
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
size_t slot_rank) {
VLOG(6) << "Set GradSlotMeta for Grad Inputs";
auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
PADDLE_ENFORCE_LE(
slot_rank, (bwd_in_meta_.size() - 1),
paddle::platform::errors::InvalidArgument(
"Slot Rank should less equal than bwd_in_meta_ size, since "
"bwd_in_meta_ is designed to hold as same num as backward "
"inputs."));
auto& metas = bwd_in_meta_.at(slot_rank);
if (metas.size() == 0) {
metas.resize(1);
}
auto& meta = metas[0];
if (fwd_out_meta && fwd_out_meta->StopGradient()) {
meta.SetStopGradient(fwd_out_meta->StopGradient());
}
if (!fwd_out.initialized()) {
VLOG(6)
<< "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
return;
}
phi::DenseTensor* dense_tensor = nullptr;
// Record TensorMeta
if (phi::DenseTensor::classof(fwd_out.impl().get())) {
// Only Copy Meta
dense_tensor = static_cast<phi::DenseTensor*>(fwd_out.impl().get());
} else if (phi::SparseCooTensor::classof(fwd_out.impl().get())) {
phi::SparseCooTensor* coo_tensor =
static_cast<phi::SparseCooTensor*>(fwd_out.impl().get());
dense_tensor = coo_tensor->mutable_non_zero_elements();
} else if (phi::SparseCsrTensor::classof(fwd_out.impl().get())) {
phi::SparseCsrTensor* csr_tensor =
static_cast<phi::SparseCsrTensor*>(fwd_out.impl().get());
dense_tensor = csr_tensor->mutable_non_zero_elements();
} else {
VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument.";
}
PADDLE_ENFORCE_NE(
dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
paddle::platform::errors::Fatal(
"Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
"which is illegal."));
meta.SetTensorMeta(dense_tensor->meta());
meta.SetPlace(fwd_out.place());
if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
need_complex_to_real_ = true;
}
}
void GradNodeBase::SetGradInMeta(
const std::vector<paddle::experimental::Tensor>& fwd_out,
size_t slot_rank) {
VLOG(6) << "Set GradSlotMeta for Grad Inputs";
size_t slot_size = fwd_out.size();
PADDLE_ENFORCE_LE(
slot_rank, (bwd_in_meta_.size() - 1),
paddle::platform::errors::InvalidArgument(
"Slot Rank should less equal than bwd_in_meta_ size, since "
"bwd_in_meta_ is designed to hold as same num as backward "
"inputs."));
auto& metas = bwd_in_meta_.at(slot_rank);
// Init stop gradient vector before use to avoid push back
if (metas.size() < slot_size) {
VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
metas.resize(slot_size);
}
for (size_t i = 0; i < slot_size; i++) {
auto& meta = metas[i];
const auto& fwd_out_tensor = fwd_out[i];
auto* fwd_out_meta =
egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
paddle::platform::errors::PreconditionNotMet(
"Bwd_in_meta should only be called while "
"autograd_meta is not null. If you got this "
"error, it indicates bugs in framework."));
if (fwd_out_meta && fwd_out_meta->StopGradient()) {
// Set Stop Gradient only when its true or non-initialized autograd_meta,
// since all default value is false.
meta.SetStopGradient(fwd_out_meta->StopGradient());
}
if (!fwd_out_tensor.initialized()) {
VLOG(6)
<< "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
return;
}
// Record TensorMeta
if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
// Only Copy Meta
phi::DenseTensor* dense_tensor =
static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());
PADDLE_ENFORCE_NE(
dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
"with phi::DataType::UNDEFINED,"
"which is illegal."));
meta.SetTensorMeta(dense_tensor->meta());
meta.SetPlace(fwd_out_tensor.place());
if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
need_complex_to_real_ = true;
}
} else {
VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
"with non-DenseTensor argument.";
}
}
}
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
size_t slot_rank) {
auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
PADDLE_ENFORCE_LE(
(slot_rank + 1), bwd_out_meta_.size(),
paddle::platform::errors::InvalidArgument(
"Slot Rank should less equal than bwd_out_meta_ size, "
"since bwd_out_meta_ is designed to hold as same num as "
"backward outputs."));
auto& metas = bwd_out_meta_.at(slot_rank);
// Init stop gradient vector before use to avoid push back
if (metas.size() == 0) {
metas.resize(1);
}
auto& meta = metas[0];
// Set Stop_gradient
if (fwd_in_meta) {
meta.SetStopGradient(fwd_in_meta->StopGradient());
} else {
meta.SetStopGradient(true);
}
// Set Adj Edges
if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
auto node = fwd_in_meta->GetMutableGradNode();
if (!node || !node.get()) {
fwd_in_meta->SetGradNode(
std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
}
VLOG(3) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
<< this->name() << " (addr: " << this << ") "
<< " to " << fwd_in_meta->GetMutableGradNode()->name()
<< " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
meta.SetEdge(fwd_in_meta->GetMutableGradNode(), fwd_in_meta->OutRankInfo());
}
// Record TensorMeta
if (fwd_in.impl() && fwd_in.impl().get()) {
if (phi::DenseTensor::classof(fwd_in.impl().get())) {
// Only Copy Meta
phi::DenseTensor* dense_tensor =
static_cast<phi::DenseTensor*>(fwd_in.impl().get());
PADDLE_ENFORCE_NE(
dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
"with phi::DataType::UNDEFINED,"
"which is illegal."));
meta.SetTensorMeta(dense_tensor->meta());
meta.SetPlace(fwd_in.place());
}
} else {
VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument.";
}
}
void GradNodeBase::SetGradOutMeta(
const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
size_t slot_size = fwd_in.size();
PADDLE_ENFORCE_LE(
slot_rank, (bwd_out_meta_.size() - 1),
paddle::platform::errors::InvalidArgument(
"Slot Rank should less equal than bwd_out_meta_ size, "
"since bwd_out_meta_ is designed to hold as same num as "
"backward outputs."));
auto& metas = bwd_out_meta_.at(slot_rank);
// Init stop gradient vector before use to avoid push back
if (metas.size() < slot_size) {
metas.resize(slot_size);
}
for (size_t i = 0; i < slot_size; i++) {
const auto& fwd_in_tensor = fwd_in[i];
auto& meta = metas[i];
auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
// Set Stop_gradient
if (fwd_in_meta) {
meta.SetStopGradient(fwd_in_meta->StopGradient());
}
// Set Adj Edges
if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
auto node = fwd_in_meta->GetMutableGradNode();
if (!node || !node.get()) {
fwd_in_meta->SetGradNode(
std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
}
VLOG(3) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
<< this->name() << " (addr: " << this << ") "
<< " to " << fwd_in_meta->GetMutableGradNode()->name()
<< " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
meta.SetEdge(fwd_in_meta->GetMutableGradNode(),
fwd_in_meta->OutRankInfo());
}
// Record TensorMeta
if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
// Only Copy Meta
phi::DenseTensor* dense_tensor =
static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());
PADDLE_ENFORCE_NE(dense_tensor->dtype(), phi::DataType::UNDEFINED,
paddle::platform::errors::Fatal(
"Attempting to copy DenseTensorMeta "
"with phi::DataType::UNDEFINED,"
"which is illegal."));
meta.SetTensorMeta(dense_tensor->meta());
meta.SetPlace(fwd_in_tensor.place());
}
} else {
VLOG(6)
<< "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument.";
}
}
}
void GradNodeBase::SetDefaultGradInOutMeta() {
PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
paddle::platform::errors::PreconditionNotMet(
"We can only support 1 input and 1 output in default grad "
"meta setter, other size of inputs and outputs should "
"create with Setter and Getters"));
// Default stop_gradient is false and slot id is 0, slot size is 1;
bwd_out_meta_[0].resize(1);
bwd_in_meta_[0].resize(1);
}
int64_t GradNodeBase::RegisterGradientHook(
size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
gradient_hooks_.emplace(next_hook_id_,
std::make_tuple(slot_id, rank, std::move(hook)));
return next_hook_id_++;
}
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
kSlotSmallVectorSize>
GradNodeBase::ApplyGradientHooks(
const paddle::small_vector<std::vector<paddle::experimental::Tensor>,
kSlotSmallVectorSize>& tensors) {
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
kSlotSmallVectorSize>
outs(tensors.size());
for (auto& hook_pair : gradient_hooks_) {
size_t slot_id = std::get<0>(hook_pair.second);
size_t rank = std::get<1>(hook_pair.second);
auto hook = std::get<2>(hook_pair.second);
PADDLE_ENFORCE(slot_id < tensors.size(),
paddle::platform::errors::Fatal(
"Slot_id from registered hook should be smaller than "
"slot size of grad_tensors"));
PADDLE_ENFORCE(rank < tensors[slot_id].size(),
paddle::platform::errors::Fatal(
"rank of slot %d from registered hook should be smaller "
"than rank size of grad_tensors",
slot_id));
std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
slot_out.resize(tensors[slot_id].size());
paddle::experimental::Tensor& out = slot_out[rank];
if (!out.defined() || !out.initialized()) {
out = (*hook)(tensors[slot_id][rank]);
} else {
// If more than one hook is registered, the input to the next hook func
// should be the output of the previous hook
out = (*hook)(out);
}
}
for (size_t i = 0; i < outs.size(); i++) {
if (outs[i].empty() && (!tensors[i].empty())) {
outs[i].resize(tensors[i].size());
}
// TODO(Jiabin): Optimize this if we only add hook slot by slot
for (size_t j = 0; j < outs[i].size(); j++) {
if (!outs[i][j].defined() || !outs[i][j].initialized()) {
outs[i][j] = tensors[i][j];
}
CheckTensor(tensors[i][j], outs[i][j]);
}
}
return outs;
}
void GradNodeBase::HandleComplexGradToRealGrad(
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
kSlotSmallVectorSize>* out_grads) {
for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
const std::vector<paddle::experimental::Tensor>& slot_out_grads =
(*out_grads)[slot_id];
for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];
PADDLE_ENFORCE(
slot_meta.HasTensorMeta() > 0,
paddle::platform::errors::Fatal(
"We require TensorMeta in GradInputMeta() to obtain forward data "
"types."
"However, no TensorMeta is detected in bwd_out_meta_."));
auto fwd_data_type = paddle::framework::TransToProtoVarType(
slot_meta.GetTensorMeta().dtype);
const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];
if (paddle::framework::IsComplexType(fwd_data_type)) continue;
// Only Handle Complex To Real for DenseTensor for now
if (phi::DenseTensor::classof(grad.impl().get())) {
phi::DenseTensor* grad_dense_tensor =
static_cast<phi::DenseTensor*>(grad.impl().get());
auto curr_data_type =
paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
if (!paddle::framework::IsComplexType(curr_data_type)) continue;
// Convert Complex GradOut to Real
auto out = std::make_shared<phi::DenseTensor>();
paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type,
*grad_dense_tensor, out.get());
(*out_grads)[slot_id][rank_id].set_impl(out);
}
}
}
}
} // namespace egr