-
Notifications
You must be signed in to change notification settings - Fork 10
/
graph.go
366 lines (309 loc) · 8.99 KB
/
graph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
package dag
import (
"bytes"
"fmt"
"sort"
)
// Graph is used to represent a dependency graph.
type Graph struct {
vertices Set
edges Set
downEdges map[interface{}]Set
upEdges map[interface{}]Set
}
// Subgrapher allows a Vertex to be a Graph itself, by returning a Grapher.
type Subgrapher interface {
Subgraph() Grapher
}
// A Grapher is any type that returns a Grapher, mainly used to identify
// dag.Graph and dag.AcyclicGraph. In the case of Graph and AcyclicGraph, they
// return themselves.
type Grapher interface {
DirectedGraph() Grapher
}
// Vertex of the graph.
type Vertex interface{}
// NamedVertex is an optional interface that can be implemented by Vertex
// to give it a human-friendly name that is used for outputting the graph.
type NamedVertex interface {
Vertex
Name() string
}
func (g *Graph) DirectedGraph() Grapher {
return g
}
// Vertices returns the list of all the vertices in the graph.
func (g *Graph) Vertices() []Vertex {
result := make([]Vertex, 0, len(g.vertices))
for _, v := range g.vertices {
result = append(result, v.(Vertex))
}
return result
}
// Edges returns the list of all the edges in the graph.
func (g *Graph) Edges() []Edge {
result := make([]Edge, 0, len(g.edges))
for _, v := range g.edges {
result = append(result, v.(Edge))
}
return result
}
// EdgesFrom returns the list of edges from the given source.
func (g *Graph) EdgesFrom(v Vertex) []Edge {
var result []Edge
from := hashcode(v)
for _, e := range g.Edges() {
if hashcode(e.Source()) == from {
result = append(result, e)
}
}
return result
}
// EdgesTo returns the list of edges to the given target.
func (g *Graph) EdgesTo(v Vertex) []Edge {
var result []Edge
search := hashcode(v)
for _, e := range g.Edges() {
if hashcode(e.Target()) == search {
result = append(result, e)
}
}
return result
}
// HasVertex checks if the given Vertex is present in the graph.
func (g *Graph) HasVertex(v Vertex) bool {
return g.vertices.Include(v)
}
// HasEdge checks if the given Edge is present in the graph.
func (g *Graph) HasEdge(e Edge) bool {
return g.edges.Include(e)
}
// Add adds a vertex to the graph. This is safe to call multiple time with
// the same Vertex.
func (g *Graph) Add(v Vertex) Vertex {
g.init()
g.vertices.Add(v)
return v
}
// Remove removes a vertex from the graph. This will also remove any
// edges with this vertex as a source or target.
func (g *Graph) Remove(v Vertex) Vertex {
// Delete the vertex itself
g.vertices.Delete(v)
// Delete the edges to non-existent things
for _, target := range g.downEdgesNoCopy(v) {
g.RemoveEdge(BasicEdge(v, target))
}
for _, source := range g.upEdgesNoCopy(v) {
g.RemoveEdge(BasicEdge(source, v))
}
return nil
}
// Replace replaces the original Vertex with replacement. If the original
// does not exist within the graph, then false is returned. Otherwise, true
// is returned.
func (g *Graph) Replace(original, replacement Vertex) bool {
// If we don't have the original, we can't do anything
if !g.vertices.Include(original) {
return false
}
// If they're the same, then don't do anything
if original == replacement {
return true
}
// Add our new vertex, then copy all the edges
g.Add(replacement)
for _, target := range g.downEdgesNoCopy(original) {
g.Connect(BasicEdge(replacement, target))
}
for _, source := range g.upEdgesNoCopy(original) {
g.Connect(BasicEdge(source, replacement))
}
// Remove our old vertex, which will also remove all the edges
g.Remove(original)
return true
}
// RemoveEdge removes an edge from the graph.
func (g *Graph) RemoveEdge(edge Edge) {
g.init()
// Delete the edge from the set
g.edges.Delete(edge)
// Delete the up/down edges
if s, ok := g.downEdges[hashcode(edge.Source())]; ok {
s.Delete(edge.Target())
}
if s, ok := g.upEdges[hashcode(edge.Target())]; ok {
s.Delete(edge.Source())
}
}
// UpEdges returns the vertices connected to the outward edges from the source
// Vertex v.
func (g *Graph) UpEdges(v Vertex) Set {
return g.upEdgesNoCopy(v).Copy()
}
// DownEdges returns the vertices connected from the inward edges to Vertex v.
func (g *Graph) DownEdges(v Vertex) Set {
return g.downEdgesNoCopy(v).Copy()
}
// downEdgesNoCopy returns the outward edges from the source Vertex v as a Set.
// This Set is the same as used internally bu the Graph to prevent a copy, and
// must not be modified by the caller.
func (g *Graph) downEdgesNoCopy(v Vertex) Set {
g.init()
return g.downEdges[hashcode(v)]
}
// upEdgesNoCopy returns the inward edges to the destination Vertex v as a Set.
// This Set is the same as used internally bu the Graph to prevent a copy, and
// must not be modified by the caller.
func (g *Graph) upEdgesNoCopy(v Vertex) Set {
g.init()
return g.upEdges[hashcode(v)]
}
// Connect adds an edge with the given source and target. This is safe to
// call multiple times with the same value. Note that the same value is
// verified through pointer equality of the vertices, not through the
// value of the edge itself.
func (g *Graph) Connect(edge Edge) {
g.init()
source := edge.Source()
target := edge.Target()
sourceCode := hashcode(source)
targetCode := hashcode(target)
// Do we have this already? If so, don't add it again.
if s, ok := g.downEdges[sourceCode]; ok && s.Include(target) {
return
}
// Add the edge to the set
g.edges.Add(edge)
// Add the down edge
s, ok := g.downEdges[sourceCode]
if !ok {
s = make(Set)
g.downEdges[sourceCode] = s
}
s.Add(target)
// Add the up edge
s, ok = g.upEdges[targetCode]
if !ok {
s = make(Set)
g.upEdges[targetCode] = s
}
s.Add(source)
}
// Subsume imports all of the nodes and edges from the given graph into the
// reciever, leaving the given graph unchanged.
//
// If any of the nodes in the given graph are already present in the reciever
// then the existing node will be retained and any new edges from the given
// graph will be connected with it.
//
// If the given graph has edges in common with the reciever then they will be
// ignored, because each pair of nodes can only be connected once.
func (g *Graph) Subsume(other *Graph) {
// We're using Set.Filter just as a "visit each element" here, so we're
// not doing anything with the result (which will always be empty).
other.vertices.Filter(func(i interface{}) bool {
g.Add(i)
return false
})
other.edges.Filter(func(i interface{}) bool {
g.Connect(i.(Edge))
return false
})
}
// String outputs some human-friendly output for the graph structure.
func (g *Graph) StringWithNodeTypes() string {
var buf bytes.Buffer
// Build the list of node names and a mapping so that we can more
// easily alphabetize the output to remain deterministic.
vertices := g.Vertices()
names := make([]string, 0, len(vertices))
mapping := make(map[string]Vertex, len(vertices))
for _, v := range vertices {
name := VertexName(v)
names = append(names, name)
mapping[name] = v
}
sort.Strings(names)
// Write each node in order...
for _, name := range names {
v := mapping[name]
targets := g.downEdges[hashcode(v)]
buf.WriteString(fmt.Sprintf("%s - %T\n", name, v))
// Alphabetize dependencies
deps := make([]string, 0, targets.Len())
targetNodes := make(map[string]Vertex)
for _, target := range targets {
dep := VertexName(target)
deps = append(deps, dep)
targetNodes[dep] = target
}
sort.Strings(deps)
// Write dependencies
for _, d := range deps {
buf.WriteString(fmt.Sprintf(" %s - %T\n", d, targetNodes[d]))
}
}
return buf.String()
}
// String outputs some human-friendly output for the graph structure.
func (g *Graph) String() string {
var buf bytes.Buffer
// Build the list of node names and a mapping so that we can more
// easily alphabetize the output to remain deterministic.
vertices := g.Vertices()
names := make([]string, 0, len(vertices))
mapping := make(map[string]Vertex, len(vertices))
for _, v := range vertices {
name := VertexName(v)
names = append(names, name)
mapping[name] = v
}
sort.Strings(names)
// Write each node in order...
for _, name := range names {
v := mapping[name]
targets := g.downEdges[hashcode(v)]
buf.WriteString(fmt.Sprintf("%s\n", name))
// Alphabetize dependencies
deps := make([]string, 0, targets.Len())
for _, target := range targets {
deps = append(deps, VertexName(target))
}
sort.Strings(deps)
// Write dependencies
for _, d := range deps {
buf.WriteString(fmt.Sprintf(" %s\n", d))
}
}
return buf.String()
}
func (g *Graph) init() {
if g.vertices == nil {
g.vertices = make(Set)
}
if g.edges == nil {
g.edges = make(Set)
}
if g.downEdges == nil {
g.downEdges = make(map[interface{}]Set)
}
if g.upEdges == nil {
g.upEdges = make(map[interface{}]Set)
}
}
// Dot returns a dot-formatted representation of the Graph.
func (g *Graph) Dot(opts *DotOpts) []byte {
return newMarshalGraph("", g).Dot(opts)
}
// VertexName returns the name of a vertex.
func VertexName(raw Vertex) string {
switch v := raw.(type) {
case NamedVertex:
return v.Name()
case fmt.Stringer:
return v.String()
default:
return fmt.Sprintf("%v", v)
}
}