forked from cuelang/cue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
math.go
559 lines (503 loc) · 13.1 KB
/
math.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
// Copyright 2018 The CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
import (
"math"
"github.com/cockroachdb/apd/v2"
"github.com/solo-io/cue/internal"
)
var apdContext = apd.BaseContext.WithPrecision(24)
// Abs returns the absolute value of x.
//
// Special case: Abs(±Inf) = +Inf
func Abs(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Abs(&d, x)
return &d, err
}
// Acosh returns the inverse hyperbolic cosine of x.
//
// Special cases are:
// Acosh(+Inf) = +Inf
// Acosh(x) = NaN if x < 1
// Acosh(NaN) = NaN
func Acosh(x float64) float64 {
return math.Acosh(x)
}
// Asin returns the arcsine, in radians, of x.
//
// Special cases are:
// Asin(±0) = ±0
// Asin(x) = NaN if x < -1 or x > 1
func Asin(x float64) float64 {
return math.Asin(x)
}
// Acos returns the arccosine, in radians, of x.
//
// Special case is:
// Acos(x) = NaN if x < -1 or x > 1
func Acos(x float64) float64 {
return math.Acos(x)
}
// Asinh returns the inverse hyperbolic sine of x.
//
// Special cases are:
// Asinh(±0) = ±0
// Asinh(±Inf) = ±Inf
// Asinh(NaN) = NaN
func Asinh(x float64) float64 {
return math.Asinh(x)
}
// Atan returns the arctangent, in radians, of x.
//
// Special cases are:
// Atan(±0) = ±0
// Atan(±Inf) = ±Pi/2
func Atan(x float64) float64 {
return math.Atan(x)
}
// Atan2 returns the arc tangent of y/x, using
// the signs of the two to determine the quadrant
// of the return value.
//
// Special cases are (in order):
// Atan2(y, NaN) = NaN
// Atan2(NaN, x) = NaN
// Atan2(+0, x>=0) = +0
// Atan2(-0, x>=0) = -0
// Atan2(+0, x<=-0) = +Pi
// Atan2(-0, x<=-0) = -Pi
// Atan2(y>0, 0) = +Pi/2
// Atan2(y<0, 0) = -Pi/2
// Atan2(+Inf, +Inf) = +Pi/4
// Atan2(-Inf, +Inf) = -Pi/4
// Atan2(+Inf, -Inf) = 3Pi/4
// Atan2(-Inf, -Inf) = -3Pi/4
// Atan2(y, +Inf) = 0
// Atan2(y>0, -Inf) = +Pi
// Atan2(y<0, -Inf) = -Pi
// Atan2(+Inf, x) = +Pi/2
// Atan2(-Inf, x) = -Pi/2
func Atan2(y, x float64) float64 {
return math.Atan2(y, x)
}
// Atanh returns the inverse hyperbolic tangent of x.
//
// Special cases are:
// Atanh(1) = +Inf
// Atanh(±0) = ±0
// Atanh(-1) = -Inf
// Atanh(x) = NaN if x < -1 or x > 1
// Atanh(NaN) = NaN
func Atanh(x float64) float64 {
return math.Atanh(x)
}
// Cbrt returns the cube root of x.
//
// Special cases are:
// Cbrt(±0) = ±0
// Cbrt(±Inf) = ±Inf
// Cbrt(NaN) = NaN
func Cbrt(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Cbrt(&d, x)
return &d, err
}
// Mathematical constants.
const (
E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113
Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796
Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622
Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193
SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774
SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161
SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339
Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162
Log2E = 1000000000000000000000000000000000000000000000000000000000000000 / 693147180559945309417232121458176568075500134360255254120680009
Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392
Log10E = 10000000000000000000000000000000000000000000000000000000000000 / 23025850929940456840179914546843642076011014886287729760333279
)
// Copysign returns a value with the magnitude
// of x and the sign of y.
func Copysign(x, y *internal.Decimal) *internal.Decimal {
var d internal.Decimal
d.Set(x)
d.Negative = y.Negative
return &d
}
var zero = apd.New(0, 0)
// Dim returns the maximum of x-y or 0.
//
// Special cases are:
// Dim(+Inf, +Inf) = NaN
// Dim(-Inf, -Inf) = NaN
// Dim(x, NaN) = Dim(NaN, x) = NaN
func Dim(x, y *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Sub(&d, x, y)
if err != nil {
return nil, err
}
if d.Negative {
return zero, nil
}
return &d, nil
}
// Erf returns the error function of x.
//
// Special cases are:
// Erf(+Inf) = 1
// Erf(-Inf) = -1
// Erf(NaN) = NaN
func Erf(x float64) float64 {
return math.Erf(x)
}
// Erfc returns the complementary error function of x.
//
// Special cases are:
// Erfc(+Inf) = 0
// Erfc(-Inf) = 2
// Erfc(NaN) = NaN
func Erfc(x float64) float64 {
return math.Erfc(x)
}
// Erfinv returns the inverse error function of x.
//
// Special cases are:
// Erfinv(1) = +Inf
// Erfinv(-1) = -Inf
// Erfinv(x) = NaN if x < -1 or x > 1
// Erfinv(NaN) = NaN
func Erfinv(x float64) float64 {
return math.Erfinv(x)
}
// Erfcinv returns the inverse of Erfc(x).
//
// Special cases are:
// Erfcinv(0) = +Inf
// Erfcinv(2) = -Inf
// Erfcinv(x) = NaN if x < 0 or x > 2
// Erfcinv(NaN) = NaN
func Erfcinv(x float64) float64 {
return math.Erfcinv(x)
}
// Exp returns e**x, the base-e exponential of x.
//
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func Exp(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Exp(&d, x)
return &d, err
}
var two = apd.New(2, 0)
// Exp2 returns 2**x, the base-2 exponential of x.
//
// Special cases are the same as Exp.
func Exp2(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Pow(&d, two, x)
return &d, err
}
// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
// It is more accurate than Exp(x) - 1 when x is near zero.
//
// Special cases are:
// Expm1(+Inf) = +Inf
// Expm1(-Inf) = -1
// Expm1(NaN) = NaN
// Very large values overflow to -1 or +Inf.
func Expm1(x float64) float64 {
return math.Expm1(x)
}
// Gamma returns the Gamma function of x.
//
// Special cases are:
// Gamma(+Inf) = +Inf
// Gamma(+0) = +Inf
// Gamma(-0) = -Inf
// Gamma(x) = NaN for integer x < 0
// Gamma(-Inf) = NaN
// Gamma(NaN) = NaN
func Gamma(x float64) float64 {
return math.Gamma(x)
}
// Hypot returns Sqrt(p*p + q*q), taking care to avoid
// unnecessary overflow and underflow.
//
// Special cases are:
// Hypot(±Inf, q) = +Inf
// Hypot(p, ±Inf) = +Inf
// Hypot(NaN, q) = NaN
// Hypot(p, NaN) = NaN
func Hypot(p, q float64) float64 {
return math.Hypot(p, q)
}
// J0 returns the order-zero Bessel function of the first kind.
//
// Special cases are:
// J0(±Inf) = 0
// J0(0) = 1
// J0(NaN) = NaN
func J0(x float64) float64 {
return math.J0(x)
}
// Y0 returns the order-zero Bessel function of the second kind.
//
// Special cases are:
// Y0(+Inf) = 0
// Y0(0) = -Inf
// Y0(x < 0) = NaN
// Y0(NaN) = NaN
func Y0(x float64) float64 {
return math.Y0(x)
}
// J1 returns the order-one Bessel function of the first kind.
//
// Special cases are:
// J1(±Inf) = 0
// J1(NaN) = NaN
func J1(x float64) float64 {
return math.J1(x)
}
// Y1 returns the order-one Bessel function of the second kind.
//
// Special cases are:
// Y1(+Inf) = 0
// Y1(0) = -Inf
// Y1(x < 0) = NaN
// Y1(NaN) = NaN
func Y1(x float64) float64 {
return math.Y1(x)
}
// Jn returns the order-n Bessel function of the first kind.
//
// Special cases are:
// Jn(n, ±Inf) = 0
// Jn(n, NaN) = NaN
func Jn(n int, x float64) float64 {
return math.Jn(n, x)
}
// Yn returns the order-n Bessel function of the second kind.
//
// Special cases are:
// Yn(n, +Inf) = 0
// Yn(n ≥ 0, 0) = -Inf
// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
// Yn(n, x < 0) = NaN
// Yn(n, NaN) = NaN
func Yn(n int, x float64) float64 {
return math.Yn(n, x)
}
// Ldexp is the inverse of Frexp.
// It returns frac × 2**exp.
//
// Special cases are:
// Ldexp(±0, exp) = ±0
// Ldexp(±Inf, exp) = ±Inf
// Ldexp(NaN, exp) = NaN
func Ldexp(frac float64, exp int) float64 {
return math.Ldexp(frac, exp)
}
// Log returns the natural logarithm of x.
//
// Special cases are:
// Log(+Inf) = +Inf
// Log(0) = -Inf
// Log(x < 0) = NaN
// Log(NaN) = NaN
func Log(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Ln(&d, x)
return &d, err
}
// Log10 returns the decimal logarithm of x.
// The special cases are the same as for Log.
func Log10(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Log10(&d, x)
return &d, err
}
// Log2 returns the binary logarithm of x.
// The special cases are the same as for Log.
func Log2(x *internal.Decimal) (*internal.Decimal, error) {
var d, ln2 internal.Decimal
_, _ = apdContext.Ln(&ln2, two)
_, err := apdContext.Ln(&d, x)
if err != nil {
return &d, err
}
_, err = apdContext.Quo(&d, &d, &ln2)
return &d, err
}
// Log1p returns the natural logarithm of 1 plus its argument x.
// It is more accurate than Log(1 + x) when x is near zero.
//
// Special cases are:
// Log1p(+Inf) = +Inf
// Log1p(±0) = ±0
// Log1p(-1) = -Inf
// Log1p(x < -1) = NaN
// Log1p(NaN) = NaN
func Log1p(x float64) float64 {
return math.Log1p(x)
}
// Logb returns the binary exponent of x.
//
// Special cases are:
// Logb(±Inf) = +Inf
// Logb(0) = -Inf
// Logb(NaN) = NaN
func Logb(x float64) float64 {
return math.Logb(x)
}
// Ilogb returns the binary exponent of x as an integer.
//
// Special cases are:
// Ilogb(±Inf) = MaxInt32
// Ilogb(0) = MinInt32
// Ilogb(NaN) = MaxInt32
func Ilogb(x float64) int {
return math.Ilogb(x)
}
// Mod returns the floating-point remainder of x/y.
// The magnitude of the result is less than y and its
// sign agrees with that of x.
//
// Special cases are:
// Mod(±Inf, y) = NaN
// Mod(NaN, y) = NaN
// Mod(x, 0) = NaN
// Mod(x, ±Inf) = x
// Mod(x, NaN) = NaN
func Mod(x, y float64) float64 {
return math.Mod(x, y)
}
// Pow returns x**y, the base-x exponential of y.
//
// Special cases are (in order):
// Pow(x, ±0) = 1 for any x
// Pow(1, y) = 1 for any y
// Pow(x, 1) = x for any x
// Pow(NaN, y) = NaN
// Pow(x, NaN) = NaN
// Pow(±0, y) = ±Inf for y an odd integer < 0
// Pow(±0, -Inf) = +Inf
// Pow(±0, +Inf) = +0
// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
// Pow(±0, y) = ±0 for y an odd integer > 0
// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
// Pow(-1, ±Inf) = 1
// Pow(x, +Inf) = +Inf for |x| > 1
// Pow(x, -Inf) = +0 for |x| > 1
// Pow(x, +Inf) = +0 for |x| < 1
// Pow(x, -Inf) = +Inf for |x| < 1
// Pow(+Inf, y) = +Inf for y > 0
// Pow(+Inf, y) = +0 for y < 0
// Pow(-Inf, y) = Pow(-0, -y)
// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
func Pow(x, y *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := apdContext.Pow(&d, x, y)
return &d, err
}
// Pow10 returns 10**n, the base-10 exponential of n.
//
func Pow10(n int32) *internal.Decimal {
return apd.New(1, n)
}
// Remainder returns the IEEE 754 floating-point remainder of x/y.
//
// Special cases are:
// Remainder(±Inf, y) = NaN
// Remainder(NaN, y) = NaN
// Remainder(x, 0) = NaN
// Remainder(x, ±Inf) = x
// Remainder(x, NaN) = NaN
func Remainder(x, y float64) float64 {
return math.Remainder(x, y)
}
// Signbit reports whether x is negative or negative zero.
func Signbit(x *internal.Decimal) bool {
return x.Negative
}
// Cos returns the cosine of the radian argument x.
//
// Special cases are:
// Cos(±Inf) = NaN
// Cos(NaN) = NaN
func Cos(x float64) float64 {
return math.Cos(x)
}
// Sin returns the sine of the radian argument x.
//
// Special cases are:
// Sin(±0) = ±0
// Sin(±Inf) = NaN
// Sin(NaN) = NaN
func Sin(x float64) float64 {
return math.Sin(x)
}
// Sinh returns the hyperbolic sine of x.
//
// Special cases are:
// Sinh(±0) = ±0
// Sinh(±Inf) = ±Inf
// Sinh(NaN) = NaN
func Sinh(x float64) float64 {
return math.Sinh(x)
}
// Cosh returns the hyperbolic cosine of x.
//
// Special cases are:
// Cosh(±0) = 1
// Cosh(±Inf) = +Inf
// Cosh(NaN) = NaN
func Cosh(x float64) float64 {
return math.Cosh(x)
}
// Sqrt returns the square root of x.
//
// Special cases are:
// Sqrt(+Inf) = +Inf
// Sqrt(±0) = ±0
// Sqrt(x < 0) = NaN
// Sqrt(NaN) = NaN
func Sqrt(x float64) float64 {
return math.Sqrt(x)
}
// Tan returns the tangent of the radian argument x.
//
// Special cases are:
// Tan(±0) = ±0
// Tan(±Inf) = NaN
// Tan(NaN) = NaN
func Tan(x float64) float64 {
return math.Tan(x)
}
// Tanh returns the hyperbolic tangent of x.
//
// Special cases are:
// Tanh(±0) = ±0
// Tanh(±Inf) = ±1
// Tanh(NaN) = NaN
func Tanh(x float64) float64 {
return math.Tanh(x)
}