forked from lightningnetwork/lnd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
iterator.go
429 lines (365 loc) · 14 KB
/
iterator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
package htlcswitch
import (
"encoding/binary"
"io"
"github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
)
// NetworkHop indicates the blockchain network that is intended to be the next
// hop for a forwarded HTLC. The existence of this field within the
// ForwardingInfo struct enables the ability for HTLC to cross chain-boundaries
// at will.
type NetworkHop uint8
const (
// BitcoinHop denotes that an HTLC is to be forwarded along the Bitcoin
// link with the specified short channel ID.
BitcoinHop NetworkHop = iota
// LitecoinHop denotes that an HTLC is to be forwarded along the
// Litecoin link with the specified short channel ID.
LitecoinHop
)
// String returns the string representation of the target NetworkHop.
func (c NetworkHop) String() string {
switch c {
case BitcoinHop:
return "Bitcoin"
case LitecoinHop:
return "Litecoin"
default:
return "Kekcoin"
}
}
var (
// exitHop is a special "hop" which denotes that an incoming HTLC is
// meant to pay finally to the receiving node.
exitHop lnwire.ShortChannelID
// sourceHop is a sentinel value denoting that an incoming HTLC is
// initiated by our own switch.
sourceHop lnwire.ShortChannelID
)
// ForwardingInfo contains all the information that is necessary to forward and
// incoming HTLC to the next hop encoded within a valid HopIterator instance.
// Forwarding links are to use this information to authenticate the information
// received within the incoming HTLC, to ensure that the prior hop didn't
// tamper with the end-to-end routing information at all.
type ForwardingInfo struct {
// Network is the target blockchain network that the HTLC will travel
// over next.
Network NetworkHop
// NextHop is the channel ID of the next hop. The received HTLC should
// be forwarded to this particular channel in order to continue the
// end-to-end route.
NextHop lnwire.ShortChannelID
// AmountToForward is the amount of milli-satoshis that the receiving
// node should forward to the next hop.
AmountToForward lnwire.MilliSatoshi
// OutgoingCTLV is the specified value of the CTLV timelock to be used
// in the outgoing HTLC.
OutgoingCTLV uint32
// TODO(roasbeef): modify sphinx logic to not just discard the
// remaining bytes, instead should include the rest as excess
}
// HopIterator is an interface that abstracts away the routing information
// included in HTLC's which includes the entirety of the payment path of an
// HTLC. This interface provides two basic method which carry out: how to
// interpret the forwarding information encoded within the HTLC packet, and hop
// to encode the forwarding information for the _next_ hop.
type HopIterator interface {
// ForwardingInstructions returns the set of fields that detail exactly
// _how_ this hop should forward the HTLC to the next hop.
// Additionally, the information encoded within the returned
// ForwardingInfo is to be used by each hop to authenticate the
// information given to it by the prior hop.
ForwardingInstructions() ForwardingInfo
// EncodeNextHop encodes the onion packet destined for the next hop
// into the passed io.Writer.
EncodeNextHop(w io.Writer) error
// ExtractErrorEncrypter returns the ErrorEncrypter needed for this hop,
// along with a failure code to signal if the decoding was successful.
ExtractErrorEncrypter(ErrorEncrypterExtracter) (ErrorEncrypter,
lnwire.FailCode)
}
// sphinxHopIterator is the Sphinx implementation of hop iterator which uses
// onion routing to encode the payment route in such a way so that node might
// see only the next hop in the route..
type sphinxHopIterator struct {
// ogPacket is the original packet from which the processed packet is
// derived.
ogPacket *sphinx.OnionPacket
// processedPacket is the outcome of processing an onion packet. It
// includes the information required to properly forward the packet to
// the next hop.
processedPacket *sphinx.ProcessedPacket
}
// makeSphinxHopIterator converts a processed packet returned from a sphinx
// router and converts it into an hop iterator for usage in the link.
func makeSphinxHopIterator(ogPacket *sphinx.OnionPacket,
packet *sphinx.ProcessedPacket) *sphinxHopIterator {
return &sphinxHopIterator{
ogPacket: ogPacket,
processedPacket: packet,
}
}
// A compile time check to ensure sphinxHopIterator implements the HopIterator
// interface.
var _ HopIterator = (*sphinxHopIterator)(nil)
// Encode encodes iterator and writes it to the writer.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) EncodeNextHop(w io.Writer) error {
return r.processedPacket.NextPacket.Encode(w)
}
// ForwardingInstructions returns the set of fields that detail exactly _how_
// this hop should forward the HTLC to the next hop. Additionally, the
// information encoded within the returned ForwardingInfo is to be used by each
// hop to authenticate the information given to it by the prior hop.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) ForwardingInstructions() ForwardingInfo {
fwdInst := r.processedPacket.ForwardingInstructions
var nextHop lnwire.ShortChannelID
switch r.processedPacket.Action {
case sphinx.ExitNode:
nextHop = exitHop
case sphinx.MoreHops:
s := binary.BigEndian.Uint64(fwdInst.NextAddress[:])
nextHop = lnwire.NewShortChanIDFromInt(s)
}
return ForwardingInfo{
Network: BitcoinHop,
NextHop: nextHop,
AmountToForward: lnwire.MilliSatoshi(fwdInst.ForwardAmount),
OutgoingCTLV: fwdInst.OutgoingCltv,
}
}
// ExtractErrorEncrypter decodes and returns the ErrorEncrypter for this hop,
// along with a failure code to signal if the decoding was successful. The
// ErrorEncrypter is used to encrypt errors back to the sender in the event that
// a payment fails.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) ExtractErrorEncrypter(
extracter ErrorEncrypterExtracter) (ErrorEncrypter, lnwire.FailCode) {
return extracter(r.ogPacket.EphemeralKey)
}
// OnionProcessor is responsible for keeping all sphinx dependent parts inside
// and expose only decoding function. With such approach we give freedom for
// subsystems which wants to decode sphinx path to not be dependable from
// sphinx at all.
//
// NOTE: The reason for keeping decoder separated from hop iterator is too
// maintain the hop iterator abstraction. Without it the structures which using
// the hop iterator should contain sphinx router which makes their creations in
// tests dependent from the sphinx internal parts.
type OnionProcessor struct {
router *sphinx.Router
}
// NewOnionProcessor creates new instance of decoder.
func NewOnionProcessor(router *sphinx.Router) *OnionProcessor {
return &OnionProcessor{router}
}
// Start spins up the onion processor's sphinx router.
func (p *OnionProcessor) Start() error {
return p.router.Start()
}
// Stop shutsdown the onion processor's sphinx router.
func (p *OnionProcessor) Stop() error {
p.router.Stop()
return nil
}
// DecodeHopIterator attempts to decode a valid sphinx packet from the passed io.Reader
// instance using the rHash as the associated data when checking the relevant
// MACs during the decoding process.
func (p *OnionProcessor) DecodeHopIterator(r io.Reader, rHash []byte,
incomingCltv uint32) (HopIterator, lnwire.FailCode) {
onionPkt := &sphinx.OnionPacket{}
if err := onionPkt.Decode(r); err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to decode onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
// Attempt to process the Sphinx packet. We include the payment hash of
// the HTLC as it's authenticated within the Sphinx packet itself as
// associated data in order to thwart attempts a replay attacks. In the
// case of a replay, an attacker is *forced* to use the same payment
// hash twice, thereby losing their money entirely.
sphinxPacket, err := p.router.ProcessOnionPacket(
onionPkt, rHash, incomingCltv,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return makeSphinxHopIterator(onionPkt, sphinxPacket), lnwire.CodeNone
}
// DecodeHopIteratorRequest encapsulates all date necessary to process an onion
// packet, perform sphinx replay detection, and schedule the entry for garbage
// collection.
type DecodeHopIteratorRequest struct {
OnionReader io.Reader
RHash []byte
IncomingCltv uint32
}
// DecodeHopIteratorResponse encapsulates the outcome of a batched sphinx onion
// processing.
type DecodeHopIteratorResponse struct {
HopIterator HopIterator
FailCode lnwire.FailCode
}
// Result returns the (HopIterator, lnwire.FailCode) tuple, which should
// correspond to the index of a particular DecodeHopIteratorRequest.
//
// NOTE: The HopIterator should be considered invalid if the fail code is
// anything but lnwire.CodeNone.
func (r *DecodeHopIteratorResponse) Result() (HopIterator, lnwire.FailCode) {
return r.HopIterator, r.FailCode
}
// DecodeHopIterators performs batched decoding and validation of incoming
// sphinx packets. For the same `id`, this method will return the same iterators
// and failcodes upon subsequent invocations.
//
// NOTE: In order for the responses to be valid, the caller must guarantee that
// the presented readers and rhashes *NEVER* deviate across invocations for the
// same id.
func (p *OnionProcessor) DecodeHopIterators(id []byte,
reqs []DecodeHopIteratorRequest) ([]DecodeHopIteratorResponse, error) {
var (
batchSize = len(reqs)
onionPkts = make([]sphinx.OnionPacket, batchSize)
resps = make([]DecodeHopIteratorResponse, batchSize)
)
tx := p.router.BeginTxn(id, batchSize)
for i, req := range reqs {
onionPkt := &onionPkts[i]
resp := &resps[i]
err := onionPkt.Decode(req.OnionReader)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to decode onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
err = tx.ProcessOnionPacket(
uint16(i), onionPkt, req.RHash, req.IncomingCltv,
)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionHMAC:
resp.FailCode = lnwire.CodeInvalidOnionHmac
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to process onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
}
// With that batch created, we will now attempt to write the shared
// secrets to disk. This operation will returns the set of indices that
// were detected as replays, and the computed sphinx packets for all
// indices that did not fail the above loop. Only indices that are not
// in the replay set should be considered valid, as they are
// opportunistically computed.
packets, replays, err := tx.Commit()
if err != nil {
log.Errorf("unable to process onion packet batch %x: %v",
id, err)
// If we failed to commit the batch to the secret share log, we
// will mark all not-yet-failed channels with a temporary
// channel failure and exit since we cannot proceed.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
log.Errorf("unable to process onion packet %x-%v",
id, i)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
}
// TODO(conner): return real errors to caller so link can fail?
return resps, err
}
// Otherwise, the commit was successful. Now we will post process any
// remaining packets, additionally failing any that were included in the
// replay set.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
// If this index is contained in the replay set, mark it with a
// temporary channel failure error code. We infer that the
// offending error was due to a replayed packet because this
// index was found in the replay set.
if replays.Contains(uint16(i)) {
log.Errorf("unable to process onion packet: %v",
sphinx.ErrReplayedPacket)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
continue
}
// Finally, construct a hop iterator from our processed sphinx
// packet, simultaneously caching the original onion packet.
resp.HopIterator = makeSphinxHopIterator(&onionPkts[i], &packets[i])
}
return resps, nil
}
// ExtractErrorEncrypter takes an io.Reader which should contain the onion
// packet as original received by a forwarding node and creates an
// ErrorEncrypter instance using the derived shared secret. In the case that en
// error occurs, a lnwire failure code detailing the parsing failure will be
// returned.
func (p *OnionProcessor) ExtractErrorEncrypter(ephemeralKey *btcec.PublicKey) (
ErrorEncrypter, lnwire.FailCode) {
onionObfuscator, err := sphinx.NewOnionErrorEncrypter(
p.router, ephemeralKey,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return &SphinxErrorEncrypter{
OnionErrorEncrypter: onionObfuscator,
EphemeralKey: ephemeralKey,
}, lnwire.CodeNone
}