forked from snesrev/zelda3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
zelda_rtl.c
305 lines (271 loc) · 9.45 KB
/
zelda_rtl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include "zelda_rtl.h"
#include "variables.h"
#include "misc.h"
#include "nmi.h"
#include "poly.h"
#include "attract.h"
#include "snes/ppu.h"
#include "snes/snes_regs.h"
#include "spc_player.h"
ZeldaEnv g_zenv;
// These point to the rewritten instance of the emu.
uint8 g_ram[131072];
typedef struct SimpleHdma {
const uint8 *table;
const uint8 *indir_ptr;
uint8 rep_count;
uint8 mode;
uint8 ppu_addr;
uint8 indir_bank;
} SimpleHdma;
void SimpleHdma_Init(SimpleHdma *c, DmaChannel *dc);
void SimpleHdma_DoLine(SimpleHdma *c);
static const uint8 bAdrOffsets[8][4] = {
{0, 0, 0, 0},
{0, 1, 0, 1},
{0, 0, 0, 0},
{0, 0, 1, 1},
{0, 1, 2, 3},
{0, 1, 0, 1},
{0, 0, 0, 0},
{0, 0, 1, 1}
};
static const uint8 transferLength[8] = {
1, 2, 2, 4, 4, 4, 2, 4
};
const uint16 kUpperBitmasks[] = { 0x8000, 0x4000, 0x2000, 0x1000, 0x800, 0x400, 0x200, 0x100, 0x80, 0x40, 0x20, 0x10, 8, 4, 2, 1 };
const uint8 kLitTorchesColorPlus[] = {31, 8, 4, 0};
const uint8 kDungeonCrystalPendantBit[13] = {0, 0, 4, 2, 0, 16, 2, 1, 64, 4, 1, 32, 8};
const int8 kGetBestActionToPerformOnTile_x[4] = { 7, 7, -3, 16 };
const int8 kGetBestActionToPerformOnTile_y[4] = { 6, 24, 12, 12 };
#define AT_WORD(x) (uint8)(x), (x)>>8
// direct
static const uint8 kAttractDmaTable0[13] = {0x20, AT_WORD(0x00ff), 0x50, AT_WORD(0xe018), 0x50, AT_WORD(0xe018), 1, AT_WORD(0x00ff), 0};
static const uint8 kAttractDmaTable1[10] = {0x48, AT_WORD(0x00ff), 0x30, AT_WORD(0xd830), 1, AT_WORD(0x00ff), 0};
static const uint8 kHdmaTableForEnding[19] = {
0x52, AT_WORD(0x600), 8, AT_WORD(0xe2), 8, AT_WORD(0x602), 5, AT_WORD(0x604), 0x10, AT_WORD(0x606), 0x81, AT_WORD(0xe2), 0,
};
static const uint8 kSpotlightIndirectHdma[7] = {0xf8, AT_WORD(0x1b00), 0xf8, AT_WORD(0x1bf0), 0};
static const uint8 kMapModeHdma0[7] = {0xf0, AT_WORD(0xdd27), 0xf0, AT_WORD(0xde07), 0};
static const uint8 kMapModeHdma1[7] = {0xf0, AT_WORD(0xdee7), 0xf0, AT_WORD(0xdfc7), 0};
static const uint8 kAttractIndirectHdmaTab[7] = {0xf0, AT_WORD(0x1b00), 0xf0, AT_WORD(0x1be0), 0};
static const uint8 kHdmaTableForPrayingScene[7] = {0xf8, AT_WORD(0x1b00), 0xf8, AT_WORD(0x1bf0), 0};
void zelda_apu_write(uint32_t adr, uint8_t val) {
assert(adr >= APUI00 && adr <= APUI03);
g_zenv.player->input_ports[adr & 0x3] = val;
}
void zelda_apu_write_word(uint32_t adr, uint16_t val) {
zelda_apu_write(adr, val);
zelda_apu_write(adr + 1, val >> 8);
}
uint8_t zelda_read_apui00() {
// This needs to be here because the ancilla code reads
// from the apu and we don't want to make the core code
// dependent on the apu timings, so relocated this value
// to 0x648.
return g_ram[kRam_APUI00];
}
uint8_t zelda_apu_read(uint32_t adr) {
return g_zenv.player->port_to_snes[adr & 0x3];
}
uint16_t zelda_apu_read_word(uint32_t adr) {
uint16_t rv = zelda_apu_read(adr);
rv |= zelda_apu_read(adr + 1) << 8;
return rv;
}
void zelda_ppu_write(uint32_t adr, uint8_t val) {
assert(adr >= INIDISP && adr <= STAT78);
ppu_write(g_zenv.ppu, (uint8)adr, val);
}
void zelda_ppu_write_word(uint32_t adr, uint16_t val) {
zelda_ppu_write(adr, val);
zelda_ppu_write(adr + 1, val >> 8);
}
void zelda_apu_runcycles() {
// apu_cycle(g_zenv.apu);
}
const uint8 *SimpleHdma_GetPtr(uint32 p) {
switch (p) {
case 0xCFA87: return kAttractDmaTable0;
case 0xCFA94: return kAttractDmaTable1;
case 0xebd53: return kHdmaTableForEnding;
case 0x0F2FB: return kSpotlightIndirectHdma;
case 0xabdcf: return kMapModeHdma0; // mode7
case 0xabdd6: return kMapModeHdma1; // mode7
case 0xABDDD: return kAttractIndirectHdmaTab; // mode7
case 0x2c80c: return kHdmaTableForPrayingScene;
case 0x1b00: return (uint8 *)mode7_hdma_table;
case 0x1be0: return (uint8 *)mode7_hdma_table + 0xe0;
case 0x1bf0: return (uint8 *)mode7_hdma_table + 0xf0;
case 0xadd27: return (uint8*)kMapMode_Zooms1;
case 0xade07: return (uint8*)kMapMode_Zooms1 + 0xe0;
case 0xadee7: return (uint8*)kMapMode_Zooms2;
case 0xadfc7: return (uint8*)kMapMode_Zooms2 + 0xe0;
case 0x600: return &g_ram[0x600];
case 0x602: return &g_ram[0x602];
case 0x604: return &g_ram[0x604];
case 0x606: return &g_ram[0x606];
case 0xe2: return &g_ram[0xe2];
default:
assert(0);
return NULL;
}
}
void SimpleHdma_Init(SimpleHdma *c, DmaChannel *dc) {
if (!dc->hdmaActive) {
c->table = 0;
return;
}
c->table = SimpleHdma_GetPtr(dc->aAdr | dc->aBank << 16);
c->rep_count = 0;
c->mode = dc->mode | dc->indirect << 6;
c->ppu_addr = dc->bAdr;
c->indir_bank = dc->indBank;
}
void SimpleHdma_DoLine(SimpleHdma *c) {
if (c->table == NULL)
return;
bool do_transfer = false;
if ((c->rep_count & 0x7f) == 0) {
c->rep_count = *c->table++;
if (c->rep_count == 0) {
c->table = NULL;
return;
}
if(c->mode & 0x40) {
c->indir_ptr = SimpleHdma_GetPtr(c->indir_bank << 16 | c->table[0] | c->table[1] * 256);
c->table += 2;
}
do_transfer = true;
}
if(do_transfer || c->rep_count & 0x80) {
for(int j = 0, j_end = transferLength[c->mode & 7]; j < j_end; j++) {
uint8 v = c->mode & 0x40 ? *c->indir_ptr++ : *c->table++;
zelda_ppu_write(0x2100 + c->ppu_addr + bAdrOffsets[c->mode & 7][j], v);
}
}
c->rep_count--;
}
bool ZeldaDrawPpuFrame(uint8 *pixel_buffer, size_t pitch, uint32 render_flags) {
SimpleHdma hdma_chans[2];
bool rv = PpuBeginDrawing(g_zenv.ppu, pixel_buffer, pitch, render_flags);
dma_startDma(g_zenv.dma, HDMAEN_copy, true);
SimpleHdma_Init(&hdma_chans[0], &g_zenv.dma->channel[6]);
SimpleHdma_Init(&hdma_chans[1], &g_zenv.dma->channel[7]);
// Cheat: Let the PPU impl know about the hdma perspective correction so it can avoid guessing.
if ((render_flags & kPpuRenderFlags_4x4Mode7) && g_zenv.ppu->mode == 7) {
if (hdma_chans[0].table == kMapModeHdma0)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, kMapMode_Zooms1[0], kMapMode_Zooms1[223]);
else if (hdma_chans[0].table == kMapModeHdma1)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, kMapMode_Zooms2[0], kMapMode_Zooms2[223]);
else if (hdma_chans[0].table == kAttractIndirectHdmaTab)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, mode7_hdma_table[0], mode7_hdma_table[223]);
else
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, 0, 0);
}
for (int i = 0; i < 225; i++) {
if (i == 128 && irq_flag) {
zelda_ppu_write(BG3HOFS, selectfile_var8);
zelda_ppu_write(BG3HOFS, selectfile_var8 >> 8);
zelda_ppu_write(BG3VOFS, 0);
zelda_ppu_write(BG3VOFS, 0);
if (irq_flag & 0x80) {
irq_flag = 0;
zelda_snes_dummy_write(NMITIMEN, 0x81);
}
}
ppu_runLine(g_zenv.ppu, i);
SimpleHdma_DoLine(&hdma_chans[0]);
SimpleHdma_DoLine(&hdma_chans[1]);
}
return rv;
}
void HdmaSetup(uint32 addr6, uint32 addr7, uint8 transfer_unit, uint8 reg6, uint8 reg7, uint8 indirect_bank) {
Dma *dma = g_zenv.dma;
if (addr6) {
dma_write(dma, DMAP6, transfer_unit);
dma_write(dma, BBAD6, reg6);
dma_write(dma, A1T6L, addr6);
dma_write(dma, A1T6H, addr6 >> 8);
dma_write(dma, A1B6, addr6 >> 16);
dma_write(dma, DAS60, indirect_bank);
}
dma_write(dma, DMAP7, transfer_unit);
dma_write(dma, BBAD7, reg7);
dma_write(dma, A1T7L, addr7);
dma_write(dma, A1T7H, addr7 >> 8);
dma_write(dma, A1B7, addr7 >> 16);
dma_write(dma, DAS70, indirect_bank);
}
void ZeldaInitializationCode() {
zelda_snes_dummy_write(NMITIMEN, 0);
zelda_snes_dummy_write(HDMAEN, 0);
zelda_snes_dummy_write(MDMAEN, 0);
zelda_apu_write(APUI00, 0);
zelda_apu_write(APUI01, 0);
zelda_apu_write(APUI02, 0);
zelda_apu_write(APUI03, 0);
zelda_ppu_write(INIDISP, 0x80);
Sound_LoadIntroSongBank();
Startup_InitializeMemory();
animated_tile_data_src = 0xa680;
dma_source_addr_9 = 0xb280;
dma_source_addr_14 = 0xb280 + 0x60;
zelda_snes_dummy_write(NMITIMEN, 0x81);
}
void ZeldaRunGameLoop() {
frame_counter++;
ClearOamBuffer();
Module_MainRouting();
NMI_PrepareSprites();
nmi_boolean = 0;
}
void ZeldaInitialize() {
g_zenv.dma = dma_init(NULL);
g_zenv.ppu = ppu_init(NULL);
g_zenv.ram = g_ram;
g_zenv.sram = (uint8*)calloc(8192, 1);
g_zenv.vram = g_zenv.ppu->vram;
g_zenv.player = SpcPlayer_Create();
SpcPlayer_Initialize(g_zenv.player);
dma_reset(g_zenv.dma);
ppu_reset(g_zenv.ppu);
}
void ZeldaRunPolyLoop() {
if (intro_did_run_step && !nmi_flag_update_polyhedral) {
Poly_RunFrame();
intro_did_run_step = 0;
nmi_flag_update_polyhedral = 0xff;
}
}
void ZeldaRunFrame(uint16 input, int run_what) {
if (animated_tile_data_src == 0)
ZeldaInitializationCode();
if (run_what & 2)
ZeldaRunPolyLoop();
if (run_what & 1)
ZeldaRunGameLoop();
Interrupt_NMI(input);
}
void ClearOamBuffer() { // 80841e
for (int i = 0; i < 128; i++)
oam_buf[i].y = 0xf0;
}
void Startup_InitializeMemory() { // 8087c0
memset(g_ram + 0x0, 0, 0x2000);
main_palette_buffer[0] = 0;
srm_var1 = 0;
uint8 *sram = g_zenv.sram;
if (WORD(sram[0x3e5]) != 0x55aa)
WORD(sram[0x3e5]) = 0;
if (WORD(sram[0x8e5]) != 0x55aa)
WORD(sram[0x8e5]) = 0;
if (WORD(sram[0xde5]) != 0x55aa)
WORD(sram[0xde5]) = 0;
zelda_ppu_write(TMW, 0);
INIDISP_copy = 0x80;
flag_update_cgram_in_nmi++;
}
void LoadSongBank(const uint8 *p) { // 808888
SpcPlayer_Upload(g_zenv.player, p);
}