forked from mkusner/grammarVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
molecule_vae.py
158 lines (134 loc) · 6.37 KB
/
molecule_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import nltk
import numpy as np
import zinc_grammar
import models.model_zinc
import models.model_zinc_str
def get_zinc_tokenizer(cfg):
long_tokens = filter(lambda a: len(a) > 1, cfg._lexical_index.keys())
replacements = ['$','%','^'] # ,'&']
assert len(long_tokens) == len(replacements)
for token in replacements:
assert not cfg._lexical_index.has_key(token)
def tokenize(smiles):
for i, token in enumerate(long_tokens):
smiles = smiles.replace(token, replacements[i])
tokens = []
for token in smiles:
try:
ix = replacements.index(token)
tokens.append(long_tokens[ix])
except:
tokens.append(token)
return tokens
return tokenize
def pop_or_nothing(S):
try: return S.pop()
except: return 'Nothing'
def prods_to_eq(prods):
seq = [prods[0].lhs()]
for prod in prods:
if str(prod.lhs()) == 'Nothing':
break
for ix, s in enumerate(seq):
if s == prod.lhs():
seq = seq[:ix] + list(prod.rhs()) + seq[ix+1:]
break
try:
return ''.join(seq)
except:
return ''
class ZincGrammarModel(object):
def __init__(self, weights_file, latent_rep_size=56):
""" Load the (trained) zinc encoder/decoder, grammar model. """
self._grammar = zinc_grammar
self._model = models.model_zinc
self.MAX_LEN = self._model.MAX_LEN
self._productions = self._grammar.GCFG.productions()
self._prod_map = {}
for ix, prod in enumerate(self._productions):
self._prod_map[prod] = ix
self._parser = nltk.ChartParser(self._grammar.GCFG)
self._tokenize = get_zinc_tokenizer(self._grammar.GCFG)
self._n_chars = len(self._productions)
self._lhs_map = {}
for ix, lhs in enumerate(self._grammar.lhs_list):
self._lhs_map[lhs] = ix
self.vae = self._model.MoleculeVAE()
self.vae.load(self._productions, weights_file, max_length=self.MAX_LEN, latent_rep_size=latent_rep_size)
def encode(self, smiles):
""" Encode a list of smiles strings into the latent space """
assert type(smiles) == list
tokens = map(self._tokenize, smiles)
parse_trees = [self._parser.parse(t).next() for t in tokens]
productions_seq = [tree.productions() for tree in parse_trees]
indices = [np.array([self._prod_map[prod] for prod in entry], dtype=int) for entry in productions_seq]
one_hot = np.zeros((len(indices), self.MAX_LEN, self._n_chars), dtype=np.float32)
for i in xrange(len(indices)):
num_productions = len(indices[i])
one_hot[i][np.arange(num_productions),indices[i]] = 1.
one_hot[i][np.arange(num_productions, self.MAX_LEN),-1] = 1.
self.one_hot = one_hot
return self.vae.encoderMV.predict(one_hot)[0]
def _sample_using_masks(self, unmasked):
""" Samples a one-hot vector, masking at each timestep.
This is an implementation of Algorithm ? in the paper. """
eps = 1e-100
X_hat = np.zeros_like(unmasked)
# Create a stack for each input in the batch
S = np.empty((unmasked.shape[0],), dtype=object)
for ix in xrange(S.shape[0]):
S[ix] = [str(self._grammar.start_index)]
# Loop over time axis, sampling values and updating masks
for t in xrange(unmasked.shape[1]):
next_nonterminal = [self._lhs_map[pop_or_nothing(a)] for a in S]
mask = self._grammar.masks[next_nonterminal]
masked_output = np.exp(unmasked[:,t,:])*mask + eps
sampled_output = np.argmax(np.random.gumbel(size=masked_output.shape) + np.log(masked_output), axis=-1)
X_hat[np.arange(unmasked.shape[0]),t,sampled_output] = 1.0
# Identify non-terminals in RHS of selected production, and
# push them onto the stack in reverse order
rhs = [filter(lambda a: (type(a) == nltk.grammar.Nonterminal) and (str(a) != 'None'),
self._productions[i].rhs())
for i in sampled_output]
for ix in xrange(S.shape[0]):
S[ix].extend(map(str, rhs[ix])[::-1])
return X_hat # , ln_p
def decode(self, z):
""" Sample from the grammar decoder """
assert z.ndim == 2
unmasked = self.vae.decoder.predict(z)
X_hat = self._sample_using_masks(unmasked)
# Convert from one-hot to sequence of production rules
prod_seq = [[self._productions[X_hat[index,t].argmax()]
for t in xrange(X_hat.shape[1])]
for index in xrange(X_hat.shape[0])]
return [prods_to_eq(prods) for prods in prod_seq]
class ZincCharacterModel(object):
def __init__(self, weights_file, latent_rep_size=56):
self._model = models.model_zinc_str
self.MAX_LEN = 120
self.vae = self._model.MoleculeVAE()
self.charlist = ['C', '(', ')', 'c', '1', '2', 'o', '=', 'O', 'N', '3', 'F', '[',
'@', 'H', ']', 'n', '-', '#', 'S', 'l', '+', 's', 'B', 'r', '/',
'4', '\\', '5', '6', '7', 'I', 'P', '8', ' ']
self._char_index = {}
for ix, char in enumerate(self.charlist):
self._char_index[char] = ix
self.vae.load(self.charlist, weights_file, max_length=self.MAX_LEN, latent_rep_size=latent_rep_size)
def encode(self, smiles):
""" Encode a list of smiles strings into the latent space """
indices = [np.array([self._char_index[c] for c in entry], dtype=int) for entry in smiles]
one_hot = np.zeros((len(indices), self.MAX_LEN, len(self.charlist)), dtype=np.float32)
for i in xrange(len(indices)):
num_productions = len(indices[i])
one_hot[i][np.arange(num_productions),indices[i]] = 1.
one_hot[i][np.arange(num_productions, self.MAX_LEN),-1] = 1.
return self.vae.encoderMV.predict(one_hot)[0]
def decode(self, z):
""" Sample from the character decoder """
assert z.ndim == 2
out = self.vae.decoder.predict(z)
noise = np.random.gumbel(size=out.shape)
sampled_chars = np.argmax(np.log(out) + noise, axis=-1)
char_matrix = np.array(self.charlist)[np.array(sampled_chars, dtype=int)]
return [''.join(ch).strip() for ch in char_matrix]