Machine learning model that predict the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of molecules.
mamba env create -f requirements.yml
mamba activate qip
pip install -e .
Configuration is implemented depending on omegaconf and hydra package. You can refer to the contents of the corresponding package for instructions on how to use it.
https://shorturl.at/bJQWY
create saved_model directory and put weights into the saved_model directory.
You can execute specific configuration through experiment argument.
# bash
bash workflow.sh
python run.py experiment=<your_config_to_run>
# download tdc datset
python preprocessing.py
# multitask learning
python run.py experiment=encoder_train/gps/multitask/gps_MTHAD.yaml seed=8272
# finetuning
python run.py experiment=encoder_train/gps/finetuning/template/ames.yaml seed=8272
## example
python run.py experiment=encoder_train/gps/finetuning/template/ames.yaml seed=8272 system.checkpoint_path=${model_dir}/multitask_weight_HAD.ckpt
# If you wanna print full error log, use HYDRA_FULL_ERROR=1 option
HYDRA_FULL_ERROR=1 python run.py experiment=encoder_train/gps/finetuning/template/ames.yaml seed=8272 system.checkpoint_path=${model_dir}/multitask_weight_HAD.ckpt
# inference
python run.py experiment=encoder_train/gps/inference/inference_test.yaml seed=8272
you can change specific argument by passing <arg_name>=
python run.py experiment=<your_config_to_run> datamodule.batch_size=4 callbacks=early_stopping