Skip to content

summer3shadow/DDPM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Denoising Diffusion Probabilistic Models

An implementation of Denoising Diffusion Probabilistic Models for image generation written in PyTorch. This roughly follows the original code by Ho et al. Unlike their implementation, however, my model allows for class conditioning through bias in residual blocks.

Experiments

I have trained the model on MNIST and CIFAR-10 datasets. The model seemed to converge well on the MNIST dataset, producing realistic samples. However, I am yet to report the same CIFAR-10 quality that Ho. et al. provide in their paper. Here are the samples generated with a linear schedule after 2000 epochs:

Samples after 2000 epochs

Here is a sample of a diffusion sequence on MNIST:

Resources

I gave a talk about diffusion models, NCSNs, and their applications in audio generation. The slides are available here.

I also compiled a report with what are, in my opinion, the most crucial findings on the topic of denoising diffusion models. It is also available in this repository.

Acknowledgements

I used Phil Wang's implementation and the official Tensorflow repo as a reference for my work.

Citations

@misc{ho2020denoising,
    title   = {Denoising Diffusion Probabilistic Models},
    author  = {Jonathan Ho and Ajay Jain and Pieter Abbeel},
    year    = {2020},
    eprint  = {2006.11239},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@inproceedings{anonymous2021improved,
    title   = {Improved Denoising Diffusion Probabilistic Models},
    author  = {Anonymous},
    booktitle = {Submitted to International Conference on Learning Representations},
    year    = {2021},
    url     = {https://openreview.net/forum?id=-NEXDKk8gZ},
    note    = {under review}
}

About

PyTorch DDPM implementation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%