Building object tracker workspace for ping pong ball.
Multiple utilities (alpha version) for recording, viewing, and characterizing video data from a consumer webcam. These are used to build and organize training/evaluation data which can be used to tune object tracker algo's for a desired task and time/accuracy characteristics.
The directory data/ in this repository corresponds to the ppd_data repository here: https://github.com/sutt/ppd_data
See documentation for the utility scripts here: https://github.com/sutt/ppd/tree/master/docs
git clone https://github.com/sutt/ppd.git
cd ppd
rm data/ -r
git clone https://github.com/sutt/ppd_data.git data
cd test/
pytest -vv (some tests need a webcam available and will use it)
To view a simple example:
python guiview.py --file data/proc/tmp/demo-agenda/output4.proc2.avi --showscoring
(use gui ('Tracking' to On) to turn on tracking and visually evaluate performance)
requirements:
python 2.7.13
numpy 1.14.5+mkl
opencv-contrib-python 3.2.0.8
matplotlib 2.0.1
pytest 3.3.2
imutils 0.4.3
Tkinter revision 81008
(windows supplementary .dll's)
[not sure which one right now]
openh264-1.4.0-win32msvc.dll
openh264-1.4.0-win64msvc.dll
opencv_ffmpeg320_64.dll
opencv_ffmpeg320.dll
(optional:)
jupyter
Flask
any others?