Bayesian hierarchical model for complex trait analysis
(https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004969)
Various new features and improvements:
- further reduced memory requirements
- inclusion of covariates
- grouped effects models to fit more complex models (e.g. partioning of variance)
- flat input files (not supported in bayesRv2)
- fitted values
- prediction of phenotypes
- unified source code
Previous release moved to folder /old
git clone https://github.com/syntheke/bayesR.git
in the src folder
gfortran -o bayesR -O2 -cpp RandomDistributions.f90 baymods.f90 bayesR.f90
gfortran -o bayesRv2 -O2 -cpp -Dblock -fopenmp RandomDistributions.f90 baymods.f90 bayesR.f90
ifort -o bayesR -O3 -fpp RandomDistributions.f90 baymods.f90 bayesR.f90
ifort -o bayesRv2 -O3 -fpp -Dblock -openmp -static RandomDistributions.f90 baymods.f90 bayesR.f90
bayesR -bfile simdata -out simout
Example from the 14th QTL-MAS workshop.
bayesR -bfile example/simdata -out simout -numit 10000 -burnin 5000 -seed 333
Genome position specific priors
bayesR -bfile simdata2 -out simout2 -numit 10000 -burnin 5000 -seed 333 -n 2 -snpmodel mod2 -segment seg
Grouped effects with mixture priors
bayesR -bfile simdata2 -out simout3 -numit 10000 -burnin 5000 -seed 333 -n 2 -snpmodel mod3 -segments seg -varcomp var3
bayesR -help