-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
pretrain on GEOM #10
Comments
我注释掉了loader.py中的 def download(self):
再次运行pretrain_GEOM |
Traceback (most recent call last): |
每一次的报错内容还不一定一样 希望能解答一下 是数据格式的问题或者其他方面的问题吗? |
(calm) (base) penghuan@ubuntu:~/code/SimSGT/regression$ sh script/pretrain_GEOM.sh
add args
Namespace(batch_size=2048, block_mask=False, block_size=2, brics_pooling='mean', complete_feature=True, custom_trans=True, d_model=128, dataset='GEOM/GEOM_3D_nmol100_nconf5_nupper1000_morefeat', decay=0, decoder_input_norm=True, decoder_jk='last', device=0, dim_feedforward=512, dim_pe=28, disable_remask=False, drop_mask_tokens=True, eigvec_norm='L2', epochs=100, eps=0.5, gnn_JK='last', gnn_activation='relu', gnn_decoder_layer=3, gnn_dropout=0, gnn_emb_dim=300, gnn_encoder_layer=5, gnn_norm='batchnorm', gnn_token_layer=1, gnn_type='gin_v3', input_model_file=None, kernel_times=[], kernel_times_func='none', laplacian_norm='none', layers=3, log_steps=100, loss='mse', loss_all_nodes=False, lr=0.001, mask_rate=0.35, max_freqs=20, model_file=None, model_save_prefix='model', moving_average_decay=0.99, name='pretrain_GEOM', nhead=4, no_edge_tokenizer=False, nonpara_tokenizer=True, num_workers=4, optim_file=None, pe_type='none', phi_hidden_dim=32, phi_out_dim=32, post_layers=2, pretrained_tokenizer=False, raw_norm_type='none', resume_epoch=0, save_epochs=20, seed=42, split=None, subgraph_mask=False, tk_JK='last', tk_activation='relu', tk_decoder_JK='last', tk_decoder_layers=1, tk_decoder_remask=False, tk_dropout=0, tk_full_x=False, tk_gnn_type='gin', tk_layers=1, tk_no_edge=False, tk_no_edge_decoder=False, tk_pretrain_scheme='graphmae', tk_trans_layers=0, tlr_scale=1.0, tokenizer_path=None, tokenizer_type='gin', trans_decoder_layer=1, trans_encoder_layer=4, transformer_activation='relu', transformer_dropout=0, transformer_norm_input=True, use_trans_decoder=True, zero_mask=False)
[2024-07-14 01:10:05] Namespace(batch_size=2048, block_mask=False, block_size=2, brics_pooling='mean', complete_feature=True, custom_trans=True, d_model=128, dataset='GEOM/GEOM_3D_nmol100_nconf5_nupper1000_morefeat', decay=0, decoder_input_norm=True, decoder_jk='last', device=device(type='cuda', index=0), dim_feedforward=512, dim_pe=28, disable_remask=False, drop_mask_tokens=True, eigvec_norm='L2', epochs=100, eps=0.5, gnn_JK='last', gnn_activation='relu', gnn_decoder_layer=3, gnn_dropout=0, gnn_emb_dim=300, gnn_encoder_layer=5, gnn_norm='batchnorm', gnn_token_layer=1, gnn_type='gin_v3', input_model_file=None, kernel_times=[], kernel_times_func='none', laplacian_norm='none', layers=3, log_file='./results/pretrain_GEOM/log.txt', log_steps=100, loss='mse', loss_all_nodes=False, lr=0.001, mask_rate=0.35, max_freqs=20, model_file=None, model_save_prefix='model', moving_average_decay=0.99, name='pretrain_GEOM', nhead=4, no_edge_tokenizer=False, nonpara_tokenizer=True, num_workers=4, optim_file=None, pe_type='none', phi_hidden_dim=32, phi_out_dim=32, post_layers=2, pretrained_tokenizer=False, raw_norm_type='none', resume_epoch=0, save_epochs=20, seed=42, split=None, subgraph_mask=False, tk_JK='last', tk_activation='relu', tk_decoder_JK='last', tk_decoder_layers=1, tk_decoder_remask=False, tk_dropout=0, tk_full_x=False, tk_gnn_type='gin', tk_layers=1, tk_no_edge=False, tk_no_edge_decoder=False, tk_pretrain_scheme='graphmae', tk_trans_layers=0, tlr_scale=1.0, tokenizer_path=None, tokenizer_type='gin', trans_decoder_layer=1, trans_encoder_layer=4, transformer_activation='relu', transformer_dropout=0, transformer_norm_input=True, use_trans_decoder=True, zero_mask=False)
Traceback (most recent call last):
File "pretraining.py", line 168, in
main()
File "pretraining.py", line 124, in main
dataset = MoleculeDataset("/home/penghuan/code/SimSGT/regression/dataset/" + dataset_name, dataset=dataset_name)
File "/home/penghuan/code/SimSGT/regression/loader.py", line 385, in init
super(MoleculeDataset, self).init(root, transform, pre_transform,
File "/home/penghuan/miniconda3/envs/calm/lib/python3.8/site-packages/torch_geometric/data/in_memory_dataset.py", line 56, in init
super().init(root, transform, pre_transform, pre_filter)
File "/home/penghuan/miniconda3/envs/calm/lib/python3.8/site-packages/torch_geometric/data/dataset.py", line 84, in init
self._download()
File "/home/penghuan/miniconda3/envs/calm/lib/python3.8/site-packages/torch_geometric/data/dataset.py", line 145, in _download
self.download()
File "/home/penghuan/code/SimSGT/regression/loader.py", line 415, in download
raise NotImplementedError('Must indicate valid location of raw data. '
NotImplementedError: Must indicate valid location of raw data. No download allowed
I think I have the correct dataset but there is still error!
The text was updated successfully, but these errors were encountered: