You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The depth of the feature_maps, aka the depth of Mixed_6e from Inception_v3, is 768 and by default 32 attention_maps are generated, then after the BAP module, the width and height of tensor are reduced, leaving a tensor of shape (N, 32, 768), right?
Then it is normalized and reshape to (N, 32*768) as the embeddings. It confuses me that wouldn't it a bit too large for an embedding? I read other papers about metric learning and most of them would not generate an embedding of size large than 512.
The text was updated successfully, but these errors were encountered:
The depth of the feature_maps, aka the depth of
Mixed_6e
from Inception_v3, is 768 and by default 32 attention_maps are generated, then after the BAP module, the width and height of tensor are reduced, leaving a tensor of shape (N, 32, 768), right?Then it is normalized and reshape to (N, 32*768) as the embeddings. It confuses me that wouldn't it a bit too large for an embedding? I read other papers about metric learning and most of them would not generate an embedding of size large than 512.
The text was updated successfully, but these errors were encountered: